期刊文献+

周期摄动保守系统周期解的存在唯一性(英文)

Existence and Uniqueness of Solution for Periodically Perturbed Conservative Systems
下载PDF
导出
摘要 长期以来,许多学者对牛顿运动方程解的存在和唯一性问题进行过研究,解决这类问题的方法主要有不动点定理,扰动理论、全局反函数定理、连续同伦法、变分法等.引入非负强制函数,利用吸引盆理论和比较定理证明了周期摄动保守系统周期解存在的一个充分条件,并证明已有的一些结论是本文主要定理的推论. For a long time,many authors had studied the existence and uniqueness of solution of the Newtonian equations.There are some main methods to solve this kind of problem,for example,fixed point theorem,perturbation theory,the global inverse function theorem,homotopy method,variational method etc.In this paper,a new sufficient condition of the existence and uniqueness of periodic solution to periodically perturbed conservative systems is given by using the basin of attraction and comparison theorem.The result of this paper generalizes some existence theorem.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期651-654,共4页 Journal of Sichuan Normal University(Natural Science)
基金 supported by The National Natural Science Foundation of China(20710015)~~
关键词 初值问题 非负强制函数 吸引盆 全局同胚 周期解 initial value problem nonnegative coercive function the basin of attraction homeomorphism periodic solution
  • 相关文献

参考文献4

二级参考文献31

  • 1葛渭高.n维Duffing型x^··+Cx^·+g(t,x)=p(t)的2π周期解[J].数学年刊:A辑,1988,(1988):488-505.
  • 2王铎.周期扰动的非保守系统的2π周期解[J].数学学报,1983,(1983):341-353.
  • 3[1]Lazer A C,Sanches D A.On periodically perturbed conservative systems[J].Mich Math Ⅰ,1969,16(2):193-200.
  • 4[2]Amaral L,Pera M P.On periodic solutions of nonconservative systems[J].Nonlinear Analysis,1982,6(7):733-743.
  • 5[3]Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[J].Nonlinear Analysis,1980,4(1):193-201.
  • 6[4]Meyer G H.On solving nonlinear equations with a one-parameter operator imbedding[J].SIAM J Numer Anal,1968,5(4):739-752.
  • 7[5]Lazer A C.Application of Lemma on bilinear forms to a problem in nonlinear Oscillations[J].Proc Amer Math Soc,1972,33(1):89-94.
  • 8[6]Dunford V,Schwartz J T.Linear Operator[M].Vol Ⅱ,New York:Interscience,1963,1289.
  • 9[7]Hadamard J.Sur les transformation ponctuelles[J].Bull Cos Math Fr,1906,34(1):71-84.
  • 10[8]Li W,Shen Z.A construction proof of the periodic solution of Duffing equation[J].Chinese Science Bulletin,1997,22(42):1591-1594.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部