期刊文献+

基于正交试验和神经网络的轴系主轴承润滑特性优化 被引量:14

Optimization of Crankshaft-Bearing Lubricating Characteristics Based on Orthogonal Experiment and Neural Network
下载PDF
导出
摘要 选取影响发动机轴系主轴承润滑特性的13个主要参数,每个参数取3个不同的值,按照正交试验的要求共得到27组不同的组合,运用仿真计算的方法得到此27种组合下的最小油膜厚度、最大油膜压力和摩擦损失功率.采用极差分析的方法确定了影响最小油膜厚度、最大油膜压力和摩擦损失功率因素的主次关系,利用BP神经网络理论建立了轴系主轴承润滑特性的神经网络模型并进行了训练和验证,然后利用该模型对影响润滑特性的主要参数进行了优化.结果表明,运用正交试验和神经网络相结合的方法进行轴系主轴承润滑特性的优化设计,减少了工作量并能得到满足精度要求的结果,对主轴承的优化设计有一定的指导意义. 13 major parameters affecting lubrication characteristics of engine main bearing were selected, and three different values for each parameter were taken. In accordance with the requirements of orthogonal experiment, 27 groups of different combinations were obtained. The minimum film thickness, maximum film pressure and friction loss power of these 27 combinations are obtained by using simulation method. The primary and secondary power relations of factors that influence the minimum film thickness, maximum film pressure and friction loss power are determined by using range analysis method. The neural network prediction model of main bearing lubrication character is built by BP neural network theory and makes its training and certification. Main parameters that affect the lubricating properties are optimized by using this model. Results show that workload is reduced and accuracy requirement of the results is satisfied by the combination of orthogonal experiment and neural network methods to optimize the design of main bearing lubricating properties. This has some guidance for the optimal design of the main bearing.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2011年第5期461-467,共7页 Transactions of Csice
基金 国家自然科学基金资助项目(50975192) 高等学校博士点专项科研基金资助项目(20090032110001)
关键词 柴油机 轴系 润滑特性 正交试验 神经网络 优化设计 diesel engine crankshaft-bearing lubricating characteristics orthogonal test neural networks optimization design
  • 相关文献

参考文献11

  • 1Mustapha Lahmar, Djamel Frihi, Daniel Nicolas. The effect of misalignment on performance characteristics of engine main crankshaft bearings [J]. European Journal of MechanicsA/Solids, 2002, 21(4): 703-714.
  • 2何芝仙,桂长林,李震,孙军.计入轴倾斜的曲轴-轴承系统动力学摩擦学耦合分析[J].农业机械学报,2007,38(12):5-10. 被引量:11
  • 3Xu K, Xie M, Tang L C. Application of neural networks in forecasting engine systems reliability [J] . Applied Soft Computing, 2003, 2 (4) :255-268.
  • 4Hafner M, Schuler M, Nelles O. Fast neural networks for diesel engine control design [J]. Control Engineing Practice, 2000, 8(11): 1211-1221.
  • 5童宝宏,桂长林,陈华,孙军,何芝仙.发动机机油泵供油特性的神经网络建模[J].内燃机学报,2007,25(3):265-270. 被引量:20
  • 6Sun Jun, Gui Changlin. Hydrodynamic lubrication analysis of journal bearing considering misalignment caused by shaft deformation [J]. Tribology International, 2004, 37(10): 841-848.
  • 7Rohit S Paranjpe, Pawan K Goenka. Analysis of crankshaft bearing using a mass conserving algorithm EJ]. TribologyTransaction, 1990, 33(3) : 333-344.
  • 8Sasa Bukovnik, Nicole Dorr. Analysis of diverse simulation models for combustion engine Journal bearings and the influence of oil condition [J]. Tribology International, 2006, 39(8): 820-826.
  • 9汪森,沈颖刚,舒歌群,王刚志,卫海桥.内燃机主轴承EHD模拟计算研究[J].润滑与密封,2007,32(3):156-160. 被引量:13
  • 10曾向阳.基于神经网络法的舱室噪声预测[J].西北工业大学学报,2004,22(4):492-495. 被引量:6

二级参考文献31

共引文献59

同被引文献104

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部