期刊文献+

形式三角矩阵环的Quasi-morphic性(英文) 被引量:1

The Quasi-morphic Property of Formal Triangular Matrix Ring
下载PDF
导出
摘要 环R称为左Quasi-morphic环,是指对任意a∈R都存在b,c∈R使得Ra=l(b)并且l(a)=Rc。文章主要证明了:BMA的形式三角矩阵环T={(ma 0b):a∈A,b∈B,m∈M}是Quasi-morphic当且仅当A,B是Quasi-morphic并且M=0。这个结果引导我们研究了Quasi-morphic环的corner环的Quasi-morphic性。 A ring is called left quasi - morphic, if for each a∈ R, there exist b and c in R such that Ra = l(b) and l(a) Rc. The main theorem of this paper is that, the formal triangular matrix rings T={(mb,a0)a∈A:b∈B,m∈A} M of (B,A) -bimoduleMis quasi - morphic if and only ifA, B is quasi -morphic and M = 0. This leads to investigate the quasi - morphic property of comer ring R, where R is a quasi - morphic ring.
出处 《数学理论与应用》 2011年第3期61-64,共4页 Mathematical Theory and Applications
关键词 Quasi—morphic 半素 形式三角矩阵环 Quasi - morphic Semi - prime Formal triangular matrix ring
  • 相关文献

参考文献6

  • 1G. Erlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976)81-90.
  • 2W. K. Nicholson, E. Sanchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra 271 (2004) 391-406.
  • 3W. K. Nicholson, E. Sanchez Campos, Principal tings with the dual of the isomorphism theorem, Glasgow Math. J. 46 (2004) 181 -191.
  • 4W. K. Nicholson, E. Sanchez Campos, Morphie modules, Comm. Algebra 33 (2005) 2629- 2647.
  • 5V. Camillo, W. K. Nichlson, Quasi - morphic rings, J. Algebra Application 6 (2007) 789 - 799.
  • 6V. Camillo, W. K. Nichlson and Z. Wang, Left quasi - morphic rings, J. Algebra Application 6 (2008) 725 -733.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部