期刊文献+

Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO_2 catalysts 被引量:5

Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO_2 catalysts
原文传递
导出
摘要 High surface area CeO2 was prepared by the surfactant-assisted route and was employed as catalyst support. The 0-3 at.% Cu doped Cu-Ni/CeO2 catalysts with 10 wt.% and 15 wt.% of total metal loading were prepared by an impregnation-coprecipitation method. The influence of Cu atomic content on the catalytic performance was investigated on the steam reforming of ethanol (SRE) for H2 production and the catalysts were characterized by N2 adsorption, inductively coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed rerduction (TPR) and H2-pulse chemisorption techniques. The activity and products distribution behaviors of the catalysts were significantly affected by the doped Cu molar content based on the promotion effect on the dispersion of NiO particles and the interactions between Cu-Ni metal and CeO2 support. Significant increase in the ethanol conversion and hydrogen selectivity were obtained when moderate Cu metal was doped into the Ni/CeO2 catalyst. Over both of the 10Ni98.5Cu1.5/CeO2 and 15Ni98.5Cu1.5/CeO2 catalysts, more than 80% of ethanol conversion and 60% of H2 selectivity were obtained in the ethanol steam-reforming when the reaction temperature was above 450 ℃. High surface area CeO2 was prepared by the surfactant-assisted route and was employed as catalyst support. The 0-3 at.% Cu doped Cu-Ni/CeO2 catalysts with 10 wt.% and 15 wt.% of total metal loading were prepared by an impregnation-coprecipitation method. The influence of Cu atomic content on the catalytic performance was investigated on the steam reforming of ethanol (SRE) for H2 production and the catalysts were characterized by N2 adsorption, inductively coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed rerduction (TPR) and H2-pulse chemisorption techniques. The activity and products distribution behaviors of the catalysts were significantly affected by the doped Cu molar content based on the promotion effect on the dispersion of NiO particles and the interactions between Cu-Ni metal and CeO2 support. Significant increase in the ethanol conversion and hydrogen selectivity were obtained when moderate Cu metal was doped into the Ni/CeO2 catalyst. Over both of the 10Ni98.5Cu1.5/CeO2 and 15Ni98.5Cu1.5/CeO2 catalysts, more than 80% of ethanol conversion and 60% of H2 selectivity were obtained in the ethanol steam-reforming when the reaction temperature was above 450 ℃.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第9期872-877,共6页 稀土学报(英文版)
基金 Project supported by the National Natural Science Foundation (21076047) the Natural Science Foundation of Zhongkai University of Agriculture and Engineering (G3100026)
关键词 copper dopant Cu-Ni/CeO2 catalyst ethanol steam reforming hydrogen production rare earths copper dopant Cu-Ni/CeO2 catalyst ethanol steam reforming hydrogen production rare earths
  • 相关文献

参考文献33

二级参考文献90

共引文献44

同被引文献92

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部