摘要
本文针对高光谱影像数据光谱分辨率高,数据量大的特点,采用以CART决策树为弱分类器的Bagging和Boosting集成学习算法对该影像进行分类,通过实验分析比较,体现出了Bagged CART和Boosted CART算法用于分类时的有效性和准确性。
This paper classed the hyperspectral image using Bagging and Boosting that makes CART be weak classification , which aims at the characteristic of high spectral resolution and massive data. The experiment represented the validity and veracity of Bagged CART and Boosted CART when they classed.
出处
《影像技术》
CAS
2011年第5期14-17,共4页
Image Technology