期刊文献+

基于KTP键合晶体的Hansch-Couillaud双波长外腔频率锁定机理 被引量:2

The Hansch-Couillaud frequency locking mechanism of dual-wavelength external cavity resonance system based on diffusion bonded KTP crystal
原文传递
导出
摘要 基于KTP键合晶体采用Hansch-Couillaud频率锁定技术实现了双波长外腔同时共振,理论和实验上分别研究了基于键合KTP晶体的HC频率锁定方案.研究表明,与采用单KTP晶体的结果相比,采用键合KTP晶体进行HC锁频时,能将激光频率分别锁定到e1光或e2光的共振峰值.实验中将环形腔腔模频率锁定到938nm激光器的输出频率上,1583nm激光器的输出频率锁定到环形腔腔模频率上,从而实现了三者之间的相位关联锁定. Dual-wavelength external cavity resonance is achieved by Hansch-Couillaud(HC) frequency locking technology based on diffusion bonded KTP crystal.The HC frequency locking scheme based on diffusion bonded KTP crystal is analyzed theoretically and experimentally.The results show that the laser frequency can be locked to the resonance peak of e1-light or e2-light,compared with the results of a single KTP crystal.The longitude mode frequency of bow-tie cavity is locked at the frequency of 938nm laser firstly,and then the longitude mode frequency of bow-tie cavity is locked at the frequency of 1583 nm laser.The phase correlated locking of three components is realized.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第10期326-333,共8页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2006CB921603) 国家高技术研究发展计划(批准号:2009AA063006) 国家基金创新团队(批准号:60821004) 国家自然科学基金(批准号:10934004,60908019) 山西省青年科学基金(批准号:2010021003-3) 山西省高等学校优秀创新团队支持计划,山西省高等学校中青年拔尖创新人才支持计划资助的课题~~
关键词 键合KTP晶体 Hansch-Couillaud锁频 双波长外腔共振 diffusion bonded KTP crystal Hansch-Couillaud frequency locking dual-wavelength external cavity resonance
  • 相关文献

参考文献1

二级参考文献4

  • 1彭堃墀,李瑞宁,黄茂全,刘晶,靳少征,李军,周寿桓.稳频环形Nd∶YAG激光器[J].中国激光,1989,16(8):449-451. 被引量:3
  • 2Fan T Y,Appl Opt,1987年,26卷,12期,2390页
  • 3Yao J Q,J Appl Phys,1984年,55卷,1期,65页
  • 4Liu Y S,Opt Lett,1983年,9卷,3期,76页

共引文献4

同被引文献33

  • 1贾富强,薛庆华,郑权,卜轶坤,谭成桥,钱龙生.全固态LBO腔内倍频556nm黄光激光器[J].中国激光,2005,32(8):1017-1021. 被引量:15
  • 2Franken P A,Hill A E,Peter C W,et al.Generation of Optical Harmonics[J].Physical Review Letters,1961,7(4):118-119.DOI:10.1103/Phy Rev Lett.7.118.
  • 3SHENTU G,XIA X,SUN Q,et al.Upconversion Detection Near 2μm at the Single Photon Level[J].Optics Letters,2013,38(23):4985-4987.DOI:10.1364/OL.38.004985.
  • 4Shikerman F,Avi Pe’er.Sum-frequency Generation as a Detector of Two-mode Squeezing[J].Physical Review A,2013,88(4):043808(7).DOI:10.1103/PhyRevA.88.043808.
  • 5Kaneda Y,Kubota S.Continuous-wave 355nm Laser Source Based on Doubly Resonant Sum-frequency Mixing in an External Resonator[J].Optics Letters,1995,20(21):2204-2206.DOI:10.1364/OL.20.00204.
  • 6Armstrong J A,Bloembergen N,Ducuing J,et al.Interactions Between Light Waves in a Nonlinear Dielectric[J].Physical Review,1962,127(6):1918-1939.DOI:10.1103/Phys Rev.127.1918.
  • 7Boyd G D,Kleinman D A.Parametric Interaction of Focused Gaussian Light Beams[J].Journal of Applied Physics,1968,39(8):3597-3639.DOI:10.1063/1.1656831.
  • 8Boyd R W,Townes C H.An Infrared Upconverter for Astronomical Imaging[J].Applied Physics Letters,1977,31(7):440-442.DOI:10.1063/1.89733.
  • 9Sabaeian M,Jalil-Abadi F S,Rezaee M M,et al.Temperature Increase Effects on a Double-pass Cacity TypeⅡSecondharmonic Generation:A Model for Depleted Gaussian Continuous Waves[J].Applied Optics,2015,54(4):869-875.DOI:10.1364/AO.54.000869.
  • 10Yamada M,Nada N,Saitoh M,et al.First-order Quasi-phase Matched LiNbO3 Waveguide Periodically Poled by Applying an External Field for Efficient Blue Second Harmonic Generation[J].Applied Physics Letters,1993,62(5):435-436.DOI:10.1063/1.108925.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部