期刊文献+

基于曲面波变换的红外弱小目标背景抑制 被引量:1

Infrared small and weak targets background suppression based on surfacelet transform
下载PDF
导出
摘要 提出了一种基于曲面波变换的弱小目标背景抑制新方法,解决红外搜索跟踪系统探测远距离弱小目标中复杂结构化背景抑制难题。根据红外图像中目标和背景杂波的特性,首先,采用曲面波变换对序列图像进行多尺度、多方向和各项异性分解,提取图像的多尺度和方向细节特征;其次,根据目标和背景杂波信号的差异,通过应用设计的核函数调整分解后的各尺度和方向的子带系数值;然后,重构修改后的各子带,从而将红外图像中弱小目标和背景杂波分离,达到抑制背景的目的;最后,采用自适应阈值分割技术得到真实目标点,最终实现对弱小目标的精确探测。实验结果显示,与局部去均值和最大中值滤波方法相比较,该方法能有效地检测出信杂比(signal-to-clutter ratio,SCR)在1.6以上的目标。 For infrared images with the characteristics of low signal-to-clutter ratio (SCR) and contrast ratio (CR), a small and weak target background suppression method based on surfacelet transform is proposed to solve the problem, and a designed function is introduced to boost the ability to suppress false information by background structure. Firstly, the surfacelet transform is adopted to decompose the input infrared image sequences, which extracts multi-scale, anisotropic and directional detail features of the image. Then, according to difference between target and background clutter signal, a kernel function is introduced to suppress background details and enhance target information for suppression background. Finally, the target image is obtained by using an adaptive thresholding method. Several groups of experimental results demonstrate that the proposed method can segment the infrared target image effectively compared with several classical infrared small and weak target detection methods (SCR〉1. 6), such as local remove means (LMR) and max median (MMed) methods.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第10期2149-2153,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60902080) 国家部委科技项目(7130721 41101050104) 教育部科学技术研究重点项目(108114) 中央高校基本科研业务费专项资金(72005623 72104810)资助课题
关键词 目标检测 背景抑制 曲面波变换 核函数 target detection background suppression surfacelet transform kernel function
  • 相关文献

参考文献16

  • 1Chen J Y, Reed I S. A detection algorithm for optical targets in clutter [J]. IEEE Trans. on Aerospace and Electronic Systems, 1987,23(1):46 - 59.
  • 2Larson R E, Pescchon J. Dynamic programming approach to trajectory estimation[J].IEEE Trans. on Automatic Control, 1996,11(3) :537 - 540.
  • 3Johnston L A, Krishnamuthy V. Performance of a dynamic prograrnming track before detect algorithm [J]. IEEE Trans. on Aerospace and Electronic Systems, 2002,38 ( 1 ) : 228 - 242.
  • 4Lin J N, Nie X, Unbehauen R. Two dimensional LMS adaptive filter incorporating a local-mean estimator for image processing[J]. IEEE Trans. on Circuits and Systems : Analog and Digital Signal Pro- cessing, 1993 : 40(7) : 417 - 428.
  • 5Huang K, Mao X. Detectability of infrared small targets [J].Infrared Physics & Technology, 2010,53(3):208 - 217.
  • 6Li H, Wei Y T, Li L Q, et al. Infrared moving target detection and tracking based on tensor locality preserving projection[J].Infrared Physics & Technology ,2010,53(2) :77 - 83.
  • 7Deshpande S D, Er M H, Venkateswarlu R, et al. Max-mean and max-median filters for detection of small targets[C]//Proc. of the Conference on Signal and Data Processing of Small Targets, 1999:71 - 83.
  • 8Porat B, Friedlander B. A frequency domain algorithm to multiframe detection and estimation of dim targets[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence ,1990,12(4):398 - 401.
  • 9Davidson G, Griffiths H D. Wavelet detection scheme for small target in sea clutter[J]. IEEE Electronics Letters, 2002, 38 (19) :1128 - 1130.
  • 10Li L Q, Tang Y Y. Wavelet-Hough transform and its applica- tions to edge and target detections [J].International Journal of Wavelets, Multi-Resolution and Information Processing, 2006,4(3) :567 - 587.

二级参考文献8

  • 1李吉成,沈振康,李秋华.强背景杂波条件下运动的弱小目标检测方法[J].红外与激光工程,2005,34(2):208-211. 被引量:12
  • 2杨杰,杨磊.基于红外背景复杂程度描述的小目标检测算法[J].红外与激光工程,2007,36(3):382-386. 被引量:25
  • 3ZHANG Bi-yin, ZHANG Tian-xu, CAO Zhi-guo, et al. Fast new small target detection algorithm based on a modified partial differential equation in infrared clutter [J].Optical Engineering, 2007,46 ( 10 ): 106401 - 1 - 6.
  • 4REED I S, GAGLIARDI R M, STOTTS L. Optical moving target detection with 3-D matched filtering [J].IEEE Trails on AES, 1988,24(4): 327-336.
  • 5ABDELKAWY E, MCGAUGHY D. Wavelet-based image target detection methods[C]//Proceedings of SPIE, Automatic Target Recognition XIII,2007,5094:337-347.
  • 6ZHANG W, CONG M Y, WANG L P. Algorithm for optical weak small targets detection and tracking:review [C]//IEEE International Conference on Neural Networks & Signal Processing, 2003: 643 -647.
  • 7BUADES A, COLL B, MOREL J. A non-local algorithm for image denoising [C]//IEEE International Conference on Computer Vision and Pattern Recognition,2005,2:20-25.
  • 8孙立辉,王永仲,周冰.基于局部统计特征的自适应红外背景抑制算法[J].红外与激光工程,2008,37(1):177-180. 被引量:10

共引文献19

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部