期刊文献+

基于当前统计模型的机动目标自适应跟踪算法 被引量:35

Adaptive tracking algorithm of maneuvering targets based on current statistical model
下载PDF
导出
摘要 当前统计模型及其自适应卡尔曼滤波算法对强机动目标具有很好的跟踪效果,但当机动目标为弱机动和非机动时算法跟踪性能较差。针对这一问题,提出了采用铃形函数作为模糊隶属函数对模型中加速度极值进行修正的自适应滤波算法,调整加速度稳定时的系统过程噪声方差,提高算法的跟踪精度。同时,借鉴强跟踪滤波算法的渐消自适应滤波因子思想,针对加速度突变的情况引入渐消因子对修正的加速度极值进行调节,提高算法在加速度突变情况下的跟踪速度。仿真实验结果表明,算法对弱机动目标和非机动目标的跟踪具有良好的效果。 The current statistical model and adaptive Kalman filter algorithm have a good performance on strong maneuvering targets tracking, but poor on weak and non-motorized maneuvering targets. To solve this problem, a bell shape function is utilized as fuzzy membership function to adjust the upper and lower limits of target acceleration. Then the algorithm can adjust the process noise variance of stable acceleration adaptively and improves the tracking accuracy effectively. By using the idea of fading factor of the strong tracking filter, a fading factor is proposed to adjust revised extreme value of acceleration. The delay time of tracking can be shortened obviously when there is a sudden maneuver or the acceleration changed greatly. Simulation results show that the algorithm has a good performance on tracking weak and non-maneuvering maneuvering targets.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第10期2154-2158,共5页 Systems Engineering and Electronics
关键词 机动目标跟踪 当前统计模型 模糊控制 自适应滤波 maneuvering target tracking current statistical model fuzzy control adaptive filtering
  • 相关文献

参考文献17

  • 1Rong L X, Vesselm P J. A survey of maneuvering target tracking. Part I: dynamic models[J].IEEE Trans. on Aerospace and Elect tonic Systems, 2003,39 (4) : 1333 - 1363.
  • 2Grewal M S, Andrews A P. Kalman filter theory and practice using matlab[M]. 3rd ed. New York: Wiley,2008:283 -284.
  • 3Signger D.A. Estimating optimal tracking filter performance for manned maneuvering targets [J ]. IEEE Trans. on Aerospace and Egectromic Systems.1970,6(7):473- 183.
  • 4Zhuo H, Kumar K SP. A "current" statistical model and adap rive algorithm for cstimating maneuvering targets[J].AIAA Journal of Guidame , 1984,7(5) :596 - 602.
  • 5Mehrotra K, Mahapatra P R. A jerk model for tracking highly maneuvering targets[J].IEEE Trans. on Aerospace and Electrortic Systems,1997,33(4):1094 -1104.
  • 6Su Y P. The research on the maneuvering object base on adaptive following arithmetic[C]//Proc. of the International Conference on Intelligent Computation Technology and Automation,2010:938 - 941.
  • 7刁联旺,杨静宇.一种改进的机动目标“当前”统计模型的描述[J].兵工学报,2005,26(6):825-828. 被引量:23
  • 8王向华,覃征,杨慧杰,杨新宇.基于“当前”统计模型的模糊自适应跟踪算法[J].兵工学报,2009,30(8):1089-1093. 被引量:20
  • 9Yu H X, Fu C K, Jiang L. A fuzzy adaptive tracking algorithm based on current statistical probabilistic data association[C]//Proc. of the 2nd International Conference on Sigmal Processing Systems,2010:757 - 759.
  • 10Wang I. H, Zhu Q D, Xing Z Y. Adaptive nonlinear fiber algorithm based on current statistical modelC]// Proc. of the IEEE International Conference on Mechatrontics and Automation ,2007:2414 - 2418.

二级参考文献13

  • 1巴宏欣,赵宗贵,杨飞,董强,张涛.机动目标的模糊自适应跟踪算法[J].系统仿真学报,2004,16(6):1181-1183. 被引量:30
  • 2刁联旺,杨静宇.一种改进的机动目标“当前”统计模型的描述[J].兵工学报,2005,26(6):825-828. 被引量:23
  • 3Hu Congwei, Chen Wu. Adaptive Kalman filtering for vehicle navigation[J ]. Journal of Global Positiioning System, 2003, 2 (1): 227-233.
  • 4Al-Dhaher A G H, Mackesy D. Multi-sensor data fusion architecture[C]//The 3rd IEEE International Workshop on Haptic, Au dio and Visual Environments and Their Applications. US: IEEE 2004:159 - 163.
  • 5Abdolreza D T, Nasser S. Novel adaptive Kalman filtering and fuzzy track fusion approach for real time application [ C ]//3rd IEEE Conference on Industrial Electronics and Applications, US: IEEE, 2008:120- 125.
  • 6Rong Li X, Zhi Xiaorong, Zhang Youmin. Mutiple-model estimation with variable structure part Ⅲ: model-group switching algorithm[M]. IEEE Transaction on Aerospace and Electronic Systems, 2003, 35(1): 225-241.
  • 7周宏仁 敬忠良 王培德.机动目标跟踪[M].北京:国防工业出版社,1994..
  • 8彭永华 吴俊杰.采用自适应滤波技术的机载雷达跟踪系统[J].航空学报,1988,9(4):192-192.
  • 9潘泉.[D].西安:西安科学大学,1999:46—60.
  • 10周宏仁.机动目标当前统计模型与自适应跟踪算法.航空学报,1983,4(1):73-86.

共引文献39

同被引文献207

引证文献35

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部