期刊文献+

基于区域融合的单视点图像深度信息提取 被引量:4

Depth Extraction of Single-view Image Using Region Merging
下载PDF
导出
摘要 将2D转换为3D是目前3D多媒体成功应用的重要解决方法之一。而在2D至3D转换过程中,单视点图像中深度信息提取是最具挑战的任务。提出一种基于区域融合的单视点图像深度信息提取方法,利用区域融合对单视点图像进行区域融合,用先验假设的深度梯度图对区域进行深度分配,得到基于区域融合的深度图。实验结果表明通过所提方法得到的深度图可绘制出具有强烈视觉效果的3D图像。 Generating three - dimensional (3 D) scenes from two - dimensional (2D) scenes is one of the important methods for 3 D multimedia services application. During 2D- to- 3D conversion, depth estimation from a single -view image is probably the most challenging task. In this paper, a new depth estimation method is proposed for single -view image based on region merging. Firstly, the image is segmented to several regions using region merging, a prior hypothesis of depth gradient is used to assign depth to this regions, and a depth map is gotten using region merging at last. The re- suits show that the 3D image can be gotten with high visual quality using the proposed system.
出处 《电视技术》 北大核心 2011年第19期11-13,共3页 Video Engineering
基金 国家自然科学基金重点项目(60832003) 上海市科委定向重点项目(09511503700)
关键词 区域融合 单视点图像 深度图 region merging single - view image depth map
  • 相关文献

参考文献8

  • 1CHENG C,LI C,CHEN L A 2D-to-3D conversion system using edge in- formation[ C]//2010 Digest of Technical Papers International Conference on Consumer Electronics. [ S. l. ] :IEEE Press,2010:377-378.
  • 2BATTIATO S,CURTI S,CASCIA M L,et al. Depth map generation by im- age classification[ C ]//Proc. SPIE:vol. 5302. [ S. l. ] :SPIE Press ,2004 : 95-104.
  • 3BATTIATO S,CAPRA A,CURTI S,et al. 3D stereoscopic image pairs by depth- map generation [ EB/OL ] . [ 2010 - 04 - 01 ] . http://cgit. nutn. edu. tw :8080/cgit/PaperDL/WSY_100506083318. PDF.
  • 4JUNG J ,HO Y. Depth map estimation from single-view image using object classification based on Bayesian learning [ C ]//3 DTV- Conference: The True Vision - Capture,Transmission and Display of 3D Video. [ S. 1. ] : IEEE Press,2010 : 1-4.
  • 5NOCK R ,NIELSEN F. Statistical region merging[ J]. IEEE Trans. Pattern Anal. Mach. Intell. ,2004,26 ( 11 ) : 1452-1458.
  • 6P Szefer. Distribution and association of trace metal in soft tissue and byssus of Mytilus edulis from east coast of Kyushu Island, Japan[J].Arch Environ Contam Toxicol, 1997,32 (2): 184 - 190.
  • 7安平,张倩,鞠芹,王贺,张兆杨.用于3DTV的图像绘制技术[J].电视技术,2010,34(1):49-51. 被引量:7
  • 8鞠芹,安平,张倩,张兆扬.高质量的虚拟视点图像的绘制方法[J].电视技术,2009,33(9):9-11. 被引量:8

二级参考文献13

  • 1MCMILLAN L. An image-based approach to three-dimensional computer graphics [D]. NC,USA:University of North Carolina at Chapel Hill, 1997.
  • 2FEHN C A. 3D-TV approach using depth-image-based rendering (DIBR)[C]//Proc. Visualization,Imaging,and Image Processing ' 03. Benalmadena,Spain : [s.n.], 2003:482-487.
  • 3SHADE J,GORTLER S,HE L W, et al. Layered depth images[C] //Proc. ACM SIGGRAPH' 98. Orlando:[s.n.],1998:231-242.
  • 4ZHANG Limlg,TAM W J. Slereoscopic image generation based on depth images for 3DTV[J].IEEE Trans. Broadcasting,2005,51 (2): 191-199.
  • 5CHEN W Y,CHANG Y L,LIN S F,et al. Efficient depth image based rendering with edge dependent depth filter and interpolation [C]//Proc. ICME 2005. [S.l.]:IEEE Press,2005:1314-1317.
  • 6JUNG K H,PARK Y K,KIM J K,et al. Depth image based rendering for 3D data services over T-DMB [C]//Proc. IEEE 3DTV- CON' 08. Istanbul,Turkey:[s.n.],2008:28-30.
  • 7MCMILLAN L. A list-priority rendering algorithm for redisplaying projected surfaces [D]. NC,USA:University of North Carolina at Chapel Hill, 1995.
  • 8MARCATO R W. Optimizing an inverse warper [D]. Boston:MIT, 1998.
  • 9KUBOTA A,SMOLIC A,MAGNOR M,et al. Muhiview imaging and 3DTV[J]. IEEE Signal Processing Magazine,2007,24(6):10-21.
  • 10MATUSIK W,PFISTER H. 3DTV: a scalable system for real-time acquisition, transmission and autostereoscopic display of dynamic scenes[EB/OL]. [2009-03-01.] http://people.csail.mit.edu/wojciech/ 3DTV/3DTV.pdf.

共引文献14

同被引文献51

  • 1张英静,李素梅,卫津津,臧艳军.立体图像质量的主观评价方案[J].光子学报,2012,41(5):602-607. 被引量:9
  • 2郑芳炫,杨志强.以消失点为基础下从单张影像中估测深度[J].信息技术与应用,2006,1(3):229-235.
  • 3KonradJ. Brown G. Wang M. et al . Automatic 2D-to-3D image conversion using 3D examples[rom the internet[CJ //Proceedings of SPIE. Bellingham: Society of Photo?Optical Instrumentation Engineers Press. 2012. 8288: 82880F.
  • 4KonradJ, Wang M, Ishwar P. 2D-to-3D image conversion by learning depth from examples[CJ / /Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Los Alamitos: IEEE Computer Society Press, 2012: 16-22.
  • 5Barnes C. Goldman D B, Shechtman E, et al. The PatchMatch randomized matching algorithm for image manipulation[J]. Communications of the ACM, 2011. 54 (1): 103-110.
  • 6Lai K, Bo L F, Ren X F, et al. A large-scale hierarchical multi-view RGB-D object dataset[CJ //Proceedings of IEEE International Conference on Robotics and Automation. Los Alamitos: IEEE Computer Society Press, 2011: 1817-1824.
  • 7Janoch A, Karayev S,Jia Y Q, et al. A category-level 3-D object dataset: putting the Kinect to work[CJ //Proceedings of the 13th International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2011: 1168-1174.
  • 8Silberman N, Hoiem D, Kohli P, et al. Indoor segmentation and support inference from RGBD images[CJ //Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer, 2012: 746-760.
  • 9Spinello L, Arras K O. People detection in RGB-D data[CJ //Proceedings of International Conference on Intelligent Robots and Systems. Los Alamitos: IEEE Computer Society, 2011: 3838-3843.
  • 10Gossow D, Weikersdorfer D, Beetz M. Distinctive texture features from perspective-invariant keypoints[CJ // Proceedings of International Conference on Pattern Recognition. Berlin: Springer, 2012: 2764-2767.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部