期刊文献+

氧气胁迫对长双歧杆菌葡萄糖代谢关键酶基因表达的影响 被引量:6

Expression of key enzymes in glucose metabolism associated with oxygen condition in bifidobacterium longum BBMN68
下载PDF
导出
摘要 双歧杆菌对氧气敏感,耐氧性成为其重要的性状及研究内容之一。实验采用半定量RT-PCR法对在4%氧气条件下培养的长双歧杆菌BBMN68的葡萄糖代谢中关键酶基因mRNA表达水平进行了比较和分析。结果表明,随着氧气浓度增加,长双歧杆菌BBMN68的生长逐渐受到抑制,在4%浓度胁迫条件下,葡萄糖磷酸变位酶、葡萄糖-6-磷酸异构酶、磷酸酮醇酶、转酮醇酶、甘油醛-3-磷酸脱氢酶在氧胁迫30min时的mRNA表达明显下降,60min及120min后,xfp和gap酶的mRNA表达量恢复到厌氧条件下的水平。研究了长双歧杆菌在氧气胁迫下菌体生长以及葡萄糖代谢中关键酶基因mRNA的变化情况,这些可能是细胞受到氧气胁迫的应激反应之一,推测葡萄糖代谢酶与长双歧杆菌耐氧性有一定关联。 Bifidobacteria is a kind of anaerobic bacteria,the ability of oxygen tolerance is one of the most important properties of Bifidobacteria. To investigate the genes expression of glucose of Bifidobacterium Longum BBMN68 which incubated in different oxygen condition,a semi-quantitative RT-PCR method was used to detect the key enzyme genes expression in 4% oxygen condition. The results indicated that the growth of Bifidobacterium Longum BBMN68 had been restrained by the oxygen stress,the mRNA level of the enzymes was depressed under 4% oxygen condition for 30 minutes,however,the mRNA level of xfp and gap had recovered under 4% oxygen condition for 60 minutes and more. Maybe it had some relationship between glucose metabolism enzymes and the growth ability of Bifidobacterium Longum BBMN68 in oxygen condition.
出处 《食品工业科技》 CAS CSCD 北大核心 2011年第10期220-224,280,共6页 Science and Technology of Food Industry
基金 国家自然科学基金支持项目(31071507)
关键词 长双歧杆菌BBMN68 耐氧性 葡萄糖代谢酶 半定量RT—PCR Bifidobacterium Longum BBMN68 oxygen tolerance glucose metabolism enzymes semi-quantitative RT-PCR
  • 相关文献

参考文献16

  • 1Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. hnmunol[J]. Cell Biol, 2000, 78:80-88.
  • 2Condon S. Responses of lactic acid bacteria to oxygen[J]. FEMS Microbiol Rev, 1987, 46: 269-281.
  • 3Li Q Q, Chen Q H, Ruan H, et al. Isolation and characterisation of an oxygen,acid and bile resistant Bifidobaeterium animalis subsp, lactis Qq08[J]. J Sci Food Agric, 2010, 90: 1340-1346.
  • 4郭笑平.埃森RWE办公大楼,德国[J].世界建筑,2000(4):38-41. 被引量:4
  • 5De Vries W, Stouthamer A H. Pathway of Glucose Fermentation in Relation to the Taxonomy of Bifidobacteria [J]. J Bacteriol,1967, 93(2):574-576.
  • 6Kawasaki S, Mimura T, Satoh T, et al. Response of tile Mieroaerophilic Bifidobacterium Species, B.boum and B. thermophilum, to Oxygen [J]. Appl Environ Mierobinl, 2006, 72 (10): 6854-6858.
  • 7Gonzalez R, Blancas A, Santillana R, et al. Growth and final product formation by Bifidobacterium infantis in aerated fermentations[J]. Appl Environ Microbiol, 2004, 65(5):606-610.
  • 8Sanchez B, Champomier-Verges M C, Collado M D C, eta]. Low-pH Adaptation and the Acid Tolerance Response of Bifidobacterium longum Biotype longum [J]. Appl Environ Microbiol, 2007,73(20):6450-6459.
  • 9Sanchez B, Champomier-Verges M C, Stuer-Lauridsen [~, et al. Adaptation and Response of Bifidobacterium animalis subsp. lactis to Bile: a Proteomic and Physiological Approach [J]. Appl Environ Microbiol, 2007,73(21):6757-6767.
  • 10Talwalkar A, Kailasapathy K. Metabolic and Biochemical Responses of Probiotic Bacteria to Oxygen[J]. J Dairy Sci, 2003, 86:2537-2546.

共引文献3

同被引文献95

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部