期刊文献+

一种Trefftz孔洞单元及其在接触问题中的应用 被引量:3

A Trefftz Hole Element and its Application to Contact Problems
下载PDF
导出
摘要 作为一种高效的数值计算工具,Trefftz有限元法愈来愈引人瞩目。与传统有限元法相比,Trefftz有限元法在处理带有孔洞、裂纹、夹杂等局部效应的问题时,无需另外细分网格,只需调整单元域内(Trefftz)插值函数,就能达到比较理想的精度。基于弹性复变理论和保角变换,求出孔洞问题的完备系,以其作为Trefftz插值函数,然后将两套单元位移场和边界条件代入修正变分泛函,再根据驻值条件构造出一种改进的Trefftz孔洞单元。数值算例表明,该类单元对于分析孔洞问题既简单又有效。 As an efficient computational tool,Trefftz finite element method(FEM) has been attracting extensive attention.Compared with the conventional FEM,the Trefftz FEM offers high accuracy in treating the problems with local effects such as holes,cracks or inclusions,simply by using appropriate intra-element(Trefftz) interpolation functions without mesh refinement.Based on the elastic complex theory and conforming transformation,the complete solution system of the hole problems was first derived and used as the Trefftz interpolation functions.Then,the two set of displacement fields and boundary conditions were substituted into the modified variational functional to construct an improved hole element by stationary condition.Numerical examples indicate that the proposed element exhibits simple and effective when analyzing the hole problems.
作者 王克用
出处 《力学季刊》 CSCD 北大核心 2011年第3期460-465,共6页 Chinese Quarterly of Mechanics
基金 上海高校选拔培养优秀青年教师科研专项基金(GJD10019) 上海工程技术大学科研启动基金(A-050110-014)
关键词 修正变分泛函 孔洞单元 保角变换 接触问题 modified variational functional hole element conforming transformation contact problem
  • 相关文献

参考文献10

  • 1Piltner P. Special finite elements with holes and internal cracks[J].Int J Numer Meth Engng, 1985, 21(8) : 1471 - 1485.
  • 2Zeng D, Kartsube N, Zhang J. A hybrid finite element method for fluid-filled porous materials~J]. Int J Numer Anal Meth Geomech, 1999, 23(13) : 1521 - 1534.
  • 3Zhang J, Katsube N. A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voids[J].Comp Meth Appl Mech Engrg, 1997, 148(3 - 4) : 225 - 234.
  • 4Lin K Y, Tong P. Singular finite elements for the fracture analysis of V-notched plate[J]. Int J Numer Meth Engng, 1980, 15(9):1343 - 1354.
  • 5Tong P, Pian T H H, Lasry S J. A hybrid-element approach to crack problems in plane elasticity[J].Int J Numer Meth Engng, 1973, 7 (3) : 297 - 308.
  • 6Zhang J. A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J]. Int J Numer Meth Engng, 1995,38(10) : 1635- 1653.
  • 7Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions[J]. Finite Elem Anal Des, 1995, 19(1) : 45- 55.
  • 8Jirousek J, Venkatesh A. Hybrid Trefftz plane elasticity elements with p-method capabilities[J].Int J Numer Meth Engng, 1992, 35(7) : 1443 - 1472.
  • 9Qin Q H, Wang H. MATLAB and C Programming for Trefftz Finite Element Methods[M]. CRC Press, 2008.4 - 7.
  • 10Wang K Y, Qin Q H, et al. A direct constraint-Trefftz FEM for analyzing elastic contact problems[J].Int J Numer Meth Engng, 2005, 63(12) :1694- 1718.

同被引文献26

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部