期刊文献+

航空煤油在微通道中传热性能的实验研究 被引量:1

Experimental Study of the Heat Transfer Performance of Aviation Kerosene in Microchannels
原文传递
导出
摘要 此前对微通道传热性能研究所用的实验工质绝大多数属于低粘性流体,针对高粘性流体的研究很少。本研究以航空煤油和水为实验工质,在层流状态范围Re数为10-100,对两种流体在微通道中的传热性能进行了实验研究。铝基微通道阵列包括163条横截面尺寸为1 mm×1 mm、长度400 mm的微通道。微通道长径比l/Dh=400。实验发现,两种流体的实验结果平均Nu数均基本不随Re数变化,但小于理论预测值。煤油和水在实验微通道中的传热性能没有本质的区别。在测量误差范围内,航空煤油总体平均Nu数比水大10%左右,分别为2.80和2.59。 The majority of working media used in tests by the predecessors to study the heat transfer performance of microchannels pertain to fluids with a low viscosity and very few pertains to fluids with a high viscosity.With aviation kerosene and water serving as the working medium respectively in the test and Reynolds number in the laminar flow state ranging from 10 to 100,the heat transfer performance of two fluids in microchannels was experimentally studied.The aluminium-base microchannel array included 163 microchannels with their section sizes being 1 mm×1 mm and the length being 400 mm.The length/diameter ratio l/Dh =400.Under the condition of such a length/diameter ratio,the influence of the inlet section on the overall heat transfer performance can be neglected.It has been found from the test results during the test that the average Nusselt numbers of two fluids are all basically not varied with a change of Re,however,smaller than the theoretical predictive values.From such a sense,the heat transfer performances of kerosene and water have no substantial difference.In addition,within the measurement error range,the overall average Nusselt number of aviation kerosene is about 10% higher than that of water and their average Nusselt numbers are 2.80 and 2.59 respectively.
出处 《热能动力工程》 CAS CSCD 北大核心 2011年第5期551-554,631-632,共4页 Journal of Engineering for Thermal Energy and Power
关键词 微通道热沉 液体冷却 传热强化 航空煤油 microchannel heat sink,liquid cooling,heat transfer intensification,aviation kerosene
  • 相关文献

参考文献15

  • 1TUCKERMAN D B,PEASE R F W. High-performance heat sinking for VLSI[ R]. IEEE Electron Device Letters, 1981, EDL - 2 (5) :126 -129.
  • 2QU W, MUDAWAR I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink [ J]. International Journal of Heat and Mass Transfer,2002,45 (12) :2549 -2565.
  • 3LEE P S,GARIMELLA S V, LIU D. Investigation of heat transter in rectangular microchannels[ J]. International Journal of Heat and Mass Transfer,2005,48 (9) : 1688 - 1704.
  • 4CELATA G P, CUMO M, GUGLIELMI M, et al. Experimental investigation of hydraulic and single phase heat transfer in 0.130 mm capillary tube [ J ]. Microscale Thermal Physical Engineering, 2002,6:85 - 97.
  • 5OWHAIB W, PALM B. Experimental investigation of single-phase convective heat transfer in eireular mieroehannels[ J ]. Experimental Thermal and Fluid Science,2004,28 ( 2 - 3 ) : 105 - 110.
  • 6GROHAMNN S. Measurement and modeling of single-phase and flow-boiling beat transfer in microtubes [ J ]. International Journal of Heat and Mass Transfer,2005,4-8 ( 19 - 20) :4073 - 4089.
  • 7SCHILDER B,YU S C M,KASAGI N. Local measurement of forced convection heat transfer in micro glass tube [ C ]//Proceedings of the Sixth International Conference on Nanoehannels, Microchannels and Minichannels, Darmstadt : ASME, 2008 : ICNMM2008 - 62054.
  • 8XIE Y Q,YU J Z,ZHAO Z H. Experimental investigation of flow and heat transfer for the ethanol-water solution and FC-72 in rectangular microehannels [ J ]. Heat Mass Transfer,2005,41:695 - 702.
  • 9HSIEH S S, LIN C Y. Convective heat transfer in liquid microchannels with hydrophobic and hydrophilie surfaces [ J ]. lnternational Journal of Heat and Mass Transter, 2009, 52( 1 -2) : 260 -270.
  • 10俞坚,马重芳,JOHN Lawer.陶瓷微通道内的传热和压降特性[J].工程热物理学报,2004,25(1):142-144. 被引量:6

二级参考文献17

  • 1[1]Campbell G O. Micro-Channel Cooling Using LIGA Fabrication Methods. In: 1998 ASME IMECE, Workshop on New Frontiers in Compact Heat Exchanger Technology.1998
  • 2[2]Cuta J M, C E McDonald, A Shekarriz. Forced Convection Heat Transfer in Parallel Channel Array Microchannel Heat Exchangers. In: ASME Int. Mech. Eng.Congress and Exhibition. Atlanta, PID-Vo1.2/HTD-Vol.338, GA, 1996
  • 3[3]Kandlikar S G, S N Joshi, S Tian. Effect of Channel Roughness on Heat Transfer and Fluid Flow Characteristics in Small Tubes. In: Proceedings of NHTC, ASME National Heat Transfer Conference. Anaheim, CA, 2001
  • 4[4]Knight R W, D J Hall, J S Goodling, et al. Heat Sink Optimization with Application to Micro-Channels. IEEE Transactions on Components. Hybrids, and Manufacturing Technology, 1992, 15(5): 832-849
  • 5[5]Peng X F, G P Peterson, B X Wang. Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels. Experimental Heat Transfer, 1994, 7(4):249-264
  • 6[6]Peng X F, G P Peterson, B X Wang. Heat Transfer Characteristics of Water Flowing Through Microchannels. Experimental Heat Transfer, 1994, 7(4): 265-283
  • 7[7]Pfund D, A Shekarriz, A Popescu, et al. Pressure Drop and Transition in Micro-Channels. In: Proceeding of the ASME Int. Mech. Eng. Congress and Exhibition, Anaheim, CA., 1998
  • 8[8]Incropera F P, D P DeWitt. Fundamentals of Heat and Mass Transfer. Fourth Edition. New York: Wiley, 1996,Chapter 8.
  • 9Zhang H Y,Pinjala D, Wong T N, et al. Single-phase liquid cooled microchannel heat sink for electronic packages. Applied Thermal Engineering, 2005, 25: 1472-1487.
  • 10Lee P S, Garimella S V, Liu D. Investigation of heat transfer in rectangular microchannels. International Journal of Heat and Mass Transfer, 2005, 48:1688-1704.

共引文献8

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部