期刊文献+

高效平板集热器件吸热面与透明盖板间距优化 被引量:9

OPTIMIZING THE SPACING BETWEEN ABSORBING PLATE AND GLAZING FOR A HIGH-EFFICIENCY FLAT-PLATE COLLECTOR UNIT
下载PDF
导出
摘要 为减小高效平板集热器件边框对吸热板的遮光损失,建立了平板型集热器件平均有效吸热面积系数的计算模型。利用此模型对平均有效面积系数随板间距、倾角、纬度的变化进行了详细分析。结果表明,平均有效面积系数随板间距的增大而减小,冬季最明显;倾角小于15°或大于75°对集热器件平均有效面积系数均不利。为便于应用,给出了季均和年均有效面积系数不小于0.90的临界板间距。鉴于对流热损失较小的合理板间距为4~6cm,拟推荐北纬20°、30°、40°、50°使用的平板集热器件最大板间距分别约为5.5、5.0、4.5、4.0cm,相应年均有效面积系数均大于0.90。在设计过程中,可参照该文研究结果,尽量达到对流热损失最小化。 To reduce shading-loss by its sidewalls of a of mean effective heat-absorption area coefficient has cient with spacing between absorbing plate and high-efficiency flat-plate collector unit, the calculation model been built. The variations of the mean effective area coeffi- glazing , tilt angle, and latitude have been analyzed using this model. The results showed that the mean effective area coefficient decreases as the spacing increase; especially in winter. It is adverse to improve the mean effective area coefficient when the tilt angle is less 15° than or greater than 75°. Critical values of seasonal and yearly effective area coefficient greater than or equal to 0.90 have been given to be conveniently applied in practice. In view of the reasonable spacing of 4-6 cm for smaller convective heat-loss, the maximum plate spacing of 5.5, 5.0, 4.5 and 4.0 cm has been recommended for a collector unit used in north latitude of 20°, 30°, 40° and 50°. The corresponding yearly effective area coefficients are greater than 0.90. In the practical design of the high-efficiency flat-plate collector unit, the convective heat-loss and shade loss should be minimized on the basis of the results of this work.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2011年第9期1413-1418,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(50966004) 云南省科技计划项目专项(2008CA024) 高等学校博士学科点专项科研基金(20095303110001) 教育部长江学者和创新团队发展计划
关键词 平板型集热器件 板间距 遮光损失 优化 fiat-plate collector unit spacing shading loss optimization
  • 相关文献

参考文献14

  • 1Nejati M R, Fathollahi V, Asadi M K. Computer simula- tion of the optical properties of high-temperature cermet solar selective coatings [ J ]. Solar Energy, 2005,78 (2) : 235-241.
  • 2何伟,季杰,张爱凤,程洪波.百叶窗形蜂窝构件窗的热性能理论研究[J].太阳能学报,2004,25(4):467-472. 被引量:4
  • 3Gan Guohui. Thermal transmittance of multiple glazing: computational fluid dynamics prediction[ J]. Applied Thermal Engineering, 2001, 21 (15) : 1583-1592.
  • 4郑宏飞,吴裕远,郑德修.窄缝高真空平面玻璃作为太阳能集热器盖板的实验研究[J].太阳能学报,2001,22(3):270-273. 被引量:8
  • 5Hottel H C. Space heating with solar energy [ A ]. Pro- ceedings of a Course Symposium[ C ] , MIT Press, 1954, 58-71.
  • 6Buchberg H, Catton I, Edwards D K. Natural convection in enclosed space - A review of application to solar ener- gy collection [ J ]. Journal of Heat Transfer, 1976, 98 (2) : 182-187.
  • 7陈则韶 葛新石.确定对流热损小的平板集热器空气夹层最佳间距的理论和实验研究.太阳能学报,1985,6(3):287-296.
  • 8陈则韶,陈熹,葛新石.关于平板集热器的最佳间距和蜂窝结构热性能的实验研究[J].太阳能学报,1991,12(2):109-114. 被引量:5
  • 9Akhtar N, Mullick S C. Approximate method for compu- tation of glass cover temperature and top heat-loss coeffi- cient of solar collectors with single glazing[ J]. Solar En- ergy, 1999, 66(5) : 349-354.
  • 10Rabl A. Active solar collectors and their applications [ M]. New York: Oxford University Press, 1985.

二级参考文献20

  • 1[1]Collins R E,Simko T M.Current status of the science andtechnology of vacuum glazing[J].Solar Energy,1998,62:189-213.
  • 2[2]Robinson S J,Collins R E.Evacuated windows-theory andpractice [A].In ISES Solar World Congress[C],InternationalSolar Energy Society,Kobe,Japan.1989.
  • 3[3]Collins R E,Robinson S J.Evacuated glazing[J].Solar Ener-gy,1991,47(1):27-38.
  • 4[4]Griffiths P W,Dileo M,Cartwright,et al.Fabrication of evacu-ated glazing at low temperature[J].Solar Energy,1998,62(4):243-249.
  • 5陈则韶,太阳能学报,1985年,6卷,3期
  • 6孙孝兰,中国科学技术大学学报,1983年,13卷,4期
  • 7Karsten Duer, et al. Energy labeling of glazings and windows in Denmark: calculated and meastired values. Solar Energy, 2002, 73 (1): 23-31.
  • 8M. Reim, et al. Highly insulating aerogel glazing for solar energy usage [J]. Solar Energy 2002, 72 (1):21-29.
  • 9Rosenfeld J L J, et al. Modelling the optical and thermal properties of complex glazing: overview of recent developments [J]. Solar Energy 2000, 69 (1-6): 1-13.
  • 10Clarke J A, et al. Assessing the overall performance of advanced glazing systems [J]. Solar Energy 1998,63 (4): 231-241.

共引文献18

同被引文献55

  • 1梁一平,戴特力,熊玲玲.双曲线和椭圆焦点的光学意义[J].重庆师范大学学报(自然科学版),2004,21(3):26-27. 被引量:13
  • 2吴和英.蜂窝技术与平板型太阳集热器[J].中国科技信息,2006(7):81-82. 被引量:2
  • 3江辉民,王洋,马最良,姚杨.蓄热水箱的设计与实验分析[J].建筑热能通风空调,2006,25(2):74-78. 被引量:15
  • 4葛新石,叶宏.传热和传质基本原理[M].北京:化学工业出版社,2009:41.
  • 5AHMAD F, SOPIAN K, RUSLAN M H, et al. Analytical and Experimental Studies on the Thermal Efficiency of the Double Pass Solar Air Collector with Finned Absorber [J]. American Journal of Applied Sciences, 2011, 8(7) : 716-723.
  • 6KUMAR R, ROSEN M A. A Critical Review of Photovoltaic-Thermal Solar Collectors for Air Heating [J]. Applied Energy 2011, 88(11): 3603-3614.
  • 7ALKIANI M M, SOPIAN K, ALGHOUL M A, et al. Review of Solar Air Collectors with Thermal Storage Units [J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1476-1490.
  • 8ZHAI X Q, DAI Y J, WANG R Z. Experimental Investigation on Air Heating and Natural Ventilation of a Solar Air Collector [J]. Energy and Buildings, 2005, 37(4) : 373-381.
  • 9LIN W X, GAO W F, LIU T. A Parametric Study on the Thermal Performanceof Cross-Corrugated Solar Air Collectors [J]. Applied Thermal Engineering, 2006, 26(10) : 1043-1053.
  • 10GBAHA P, KONAN K, SARAKA J K, et al. Influence of Obstacles with Wing Delta Shape on Flat-Plate Air Solar Collector Efficiency [J]. Journal of Applied Sciences, 2007, 7(21): 3302-3306.

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部