期刊文献+

具有不同染病者的SIJR流行病模型的研究 被引量:1

SIJR Epidemic Disease Model with Different Infections
下载PDF
导出
摘要 建立具有不同染病者的SIJR流行病模型,得到疾病消除与持续的全局渐近稳定性和疾病消除与否的基本再生数R0。当考虑连续接种时,即使R0>1,只要接种率大于u(R0-1),疾病就会消除。 SIJR epidemic disease model with different infections was established.The global asymptotic stability of disease elimination and sustainable was got,and the basic reproductive number R0 which decide whether or not the disease eliminated was obtained.Considering continuous vaccination,even if R0〉1,as long as the vaccination rate was greater than u(R0-1),the diseases would be eliminated.
出处 《安徽农业科学》 CAS 北大核心 2011年第27期16772-16774,共3页 Journal of Anhui Agricultural Sciences
基金 国家自然科学基金项目(10971164)
关键词 流行病模型 稳定性 基本再生数 SIJR模型 Epidemic model Stability Basic reproduction number SIJR model
  • 相关文献

参考文献4

二级参考文献16

  • 1耿贵珍,佟毅.GARCH模型的相依性[J].辽宁石油化工大学学报,2007,27(3):93-95. 被引量:4
  • 2Brauer F,Driessche P,van den Nodels for transmission of disease with immigration of infectives[J].Math Biosci,2001,171(2):143-154.
  • 3Coppel W A.Stability snd Asymtotie Behavior of Differential Equations[M].Heath,Boston,MA,1965.
  • 4Li M Y,Muldowney J S.A geometric qpproach to the global-stability problems[J].SIAM J Math Anal,1996,27(4):1070-1083.
  • 5Martin Jr R H.Logarithmic norms and projections applied to linear differential systems[J].J,Math Anal Appl,1974,45(2):432-454.
  • 6Martcheva M,Catillo-Chavez C.Diseases with chronic stage in a poulation with varying size[J].Math Biosci,2003,182(1):1-25.
  • 7王世飞.具有急慢性阶段的流行病动力学研究[D].信阳师范学院,数学与信息科学学院,2004.
  • 8Hodeler K P, Van den Driessche P. Backward bifurcation in epidemic control[J]. Math. biosci. ,1997,146:15-35.
  • 9Kribs-Zaleta C M. Core recruitment effects in SIS models with constant total populations[J]. Math. biosci. ,1999,160 : 109-158.
  • 10Dushoff J, Huang W, Chavez C C. Backward bifurcation and catastrophe in simple models of fatal disease[J]. Math. biosci, 1998,36:227-248.

共引文献6

同被引文献6

  • 1杨俊元,张凤琴.具有重复感染和染病年龄结构的两菌株SIJR流行病模型分析[J].运城学院学报,2006,24(5):1-3. 被引量:1
  • 2杨建雅.传染病模型再生数分析[J].运城学院学报,2006,24(2):6-7. 被引量:7
  • 3Kermack W O, Mckendrick A G. A Contribution to the Mathematical Theory of Epidemics [J]. Proc Roy Soc Lond, 1927, llS(A): 700-721.
  • 4Castillo C C, Huang W Z, Li J. Competitive Exclusion and Coexistence of Multiple Strains in a SIS/SID Model [J]. SIAM Journal of Mathematics, 1999, 59.. 1790- 1811.
  • 5Ackleh A, Allen L. Competitive Exclusion and Coexis- tence for Pathogens in an Epidemic Model with Variable Population Size [J].Journal of Mathematical Biology, 2003, 47: 153-168.
  • 6王拉弟.传染病动力学模型及控制策略研究[D].上海:上海大学,2004.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部