期刊文献+

基于递增权函数的邻接矩阵与非负矩阵分解的图像分类方法 被引量:2

Image classfication using increasing weighting function of adjacency matrix of graph and non-negetive matrix factorization
下载PDF
导出
摘要 将递增权函数的邻接矩阵和非负矩阵分解方法相结合,应用于图像分类.首先由图像中提取的特征点构造递增权函数的邻接矩阵,再对其进行非负矩阵分解,用分解后的特征向量作为PNN分类器的输入,实现对图像的分类.算法的可行性和准确性通过模拟图像和真实图像的多组实验得到了验证. In this paper,the adjacency matrix of graph based on the increasing weighting function combined with the method of non-negative matrix factorization was applied to the image classification.First,the character points could be distilled from different images.Then,these points were used to construct the adjacency matrix of the increasing weighting function,and the eigenvector of the image could be obtained by the non-negative factorization of the adjacency matrix.Finally,the eigenvector was put into PNN(Probabilistic Neural Network)classifier to accomplish the image classification.Several groups of experiments were presented between simulating images and real images.The results showed that the method presented in this paper was feasible and accurate.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2011年第5期63-67,共5页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60772121) 安徽省高校青年教师基金资助项目(2008JQ1023) 安徽省教育厅自然科学研究基金重点资助项目(KJ2010A007)
关键词 递增权函数 邻接矩阵 非负矩阵 图像分类 increasing weighting function adjacency matrix non-negative matrix factorization image classification
  • 相关文献

参考文献10

  • 1Chung F R K. Spectral graph theory [ C ]. CBMS Regional Conference Series In Mathematics, 1997:138-146.
  • 2Cvetkovic D M, Rowlinson P, Simic S. Eigenspace for graphs [ M ]. Cambridge : Cambridge University Press, 1997,265 - 271.
  • 3Merris R. Laplacian matrices of graphs : a survey [ J ]. Linear Algebra And Its Applications, 1994,197/198 : 143 - 176.
  • 4王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32
  • 5Lin L, Zhu S C, Wang Y T. Layered graph match with graph editing[ J]. Proc oflEEE Conference on Computer vision and Pattern Recognition,2007,1:885-892.
  • 6vicente S, Kolmogorov V, Rother C. Graph cut based image segmentation with connectivity priors [ C ]. Computer vision And Pattern Recognition ,2008 : 1-8.
  • 7Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [ J ]. Nature, 1999,401 (6755) :788-791.
  • 8Carcassoni M, Hancock E R. Spectral correspondence for point pattern matching [ J ]. Pattern Recognition, 2003,36 (1) :193-204.
  • 9Lee D D, Seung H S. Algorithms for non-negative matrix faetorization[ J]. Advances In Neural Information Processing System ,2001,13:556-562.
  • 10Specht D F. Probabilistic neural networks [ J ]. Neural Networks, 1990,3 ( 1 ) : 109-118.

二级参考文献14

  • 1Cvetkovié D,Doob M,Sachs H.Spectra of graphs:Theory and application[M].Berlin:Academic Press,1982.
  • 2Chung F R K.Spectral graph theory[M].Providance,Rhode Island USA:American Mathematical Society,1997.
  • 3Umeyama S.An eigen decomposition approach to weighted graph matching problems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(5):695 ~ 703.
  • 4Scott G L,Longuet-Higgins H C.An algorithm for associating the features of two images[J].Proceedings of Royal Society of London,1991,B-244:21 ~26.
  • 5Shapiro L S,Brady J M.Feature-based correspondence-An eigenvector approach[J].Image Vision Comput,1992,10 (5):283 ~288.
  • 6Carcassoni Marco,Hancock Edwin R.Spectral correspondence for point pattern matching[J].Pattern Recognition,2003,36 (1):193 ~ 204.
  • 7Carcassoni Marco,Hancock Edwin R.Correspondence matching with modal clusters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(12):1609 ~ 1615.
  • 8Myers Richard,Hancock Edwin R.Least-commitment graph matching with genetic algorithms[J].Pattern Recognition,2001,34(2):375 ~394,
  • 9Endika Bengoetxea,Pedro Larranagab,Isabelle Bloch,et al.Inexact graph matching by means of estimation of distribution algorithms[J].Pattern Recognition,2002,35 (12):2867 ~ 2880.
  • 10Sengupta K,Boyer K L.Modelbase partitioning using property matrix spectra[J].Computer Vision Image Understanding,1998,70 (2):177 ~ 196.

共引文献31

同被引文献18

  • 1Jing Yu,Zengchang Qin,Tao Wan,Xi Zhang.??Feature integration analysis of bag-of-features model for image retrieval(J)Neurocomputing . 2013
  • 2Zenghai Chen,Zheru Chi,Hong Fu,Dagan Feng.??Multi-instance multi-label image classification: A neural approach(J)Neurocomputing . 2013
  • 3Robert M. Nishikawa.??Current status and future directions of computer-aided diagnosis in mammography(J)Computerized Medical Imaging and Graphics . 2007 (4)
  • 4Huang, Hsiao-Yun,Kuo, Bor-Chen.Double nearest proportion feature extraction for hyperspectral-image classification. IEEE Transactions on Geoscience and Remote Sensing . 2010
  • 5Kersten, Paul R.,Lee, Jong-Sen,Ainsworth, Thomas L.Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Transactions on Geoscience and Remote Sensing . 2005
  • 6Shuang Wang,Kun Liu,Jingjing Pei,Maoguo Gong,Yachao Liu.Unsupervised Classification of Fully Polarimetric SAR Images Based on Scattering Power Entropy and Copolarized Ratio. Geoscience and Remote Sensing Letters, IEEE . 2013
  • 7Kononenko I.Estimating attributes: Analysis and extensions of Relief. Proceedings of the European Conference on Machine Learning . 1994
  • 8Qian Y T,Ye M C,Zhou J.Hyperspectral image classification based on structured sparse logistic regression and threedimensional wavelet texture features. IEEE Transactions on Geoscience and Remote Sensing . 2013
  • 9Davis J W,Keck M A.A Two-Stage Template Approach to Person Detection in Thermal Imagery. Application of Computer Vision . 2005
  • 10WANG Nian,ZHANG Jiang,TANG Jun,FAN Yizheng,LIANG Dong.A Spectrum Based Algorithm for Image Classification[J].Chinese Journal of Electronics,2009,18(3):427-430. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部