期刊文献+

风电场超短期功率预测及不确定性分析 被引量:12

UL TRA-SHORT TERM WIND POWER PREDICTION AND UNCERTAINTY ASSESSMENT
下载PDF
导出
摘要 研究了在不使用数值气象预报的条件下,基于历史数据序列,采用BP神经网络对风电场未来3h功率进行预测。结合多次的计算试验,合理确定了输入神经元参数;提出两种风电场功率预测路线:一种是首先预测每台机组功率,再累加计算风电场功率;另一种是直接计算整个风电场功率。结果表明,第一种预测路线更适合我国风电场集中分布的情况,相对预测误差为9.6%。在此基础上,建立了基于独立分量分析的条件概率计算模型,对预测结果的不确定性进行了分析。 Wind power prediction is of great importance for the safety and stabilization of grids. Based on historical data, three hour's wind power prediction was studied using BP neural network without numerical weather prediction. The input parameters were chosen after many times of calculation. Two kinds of prediction routes were put forward: One is to predict each wind turbine' s power firstly, and then accumulate to get the wind farm power. The other is to predict the wind farm power directly. The result show that the first route has more accurate prediction re- sult with relative error of 9.6%. A conditional probability model based on independent component analysis was built for the uncertainty assessment of prediction results.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2011年第8期1251-1256,共6页 Acta Energiae Solaris Sinica
基金 中央高校基本科研业务费专项资金(09MG17) 国家高技术研究发展(863)计划(2007AA05Z428)
关键词 风力发电 功率预测 历史数据 神经网络 不确定性分析 wind power power prediction historical data neural network uncertainty assessment
  • 相关文献

参考文献15

  • 1Alexandre Costa, Antonio Crespo, Jorge Navarro, et al.A review on the young history of the wind power short- term prediction [ J ]. Renewable and Sustainable Energy Reviews, 2008, 12(6): 1725-174d.
  • 2刘永前,韩爽,杨勇平,高辉.提前三小时风电机组出力组合预报研究[J].太阳能学报,2007,28(8):839-843. 被引量:21
  • 3Ismael S6nchez. Short-term prediction of wind energy production [ J ]. International Journal of Forecasting, 2006, 22(1) : 43-46.
  • 4Kariniotakis G, Stavrakis G, Nogaret E. Wind power forecasting using advanced neural network models [ J ]. IEEE Trans Energy Conversion, 1996, 11(4): 762- 767.
  • 5Barbounis T G, Theocharis J B. Locally recurrent neural networks for long-term wind speed and power prediction [J]. Neuro Computing, 2006, 69(4-6): 466-496.
  • 6Sideratos George, Hatziargyriou Nikos D. An advanced statistical method for wind power forecasting [ J ]. IEEE Transactions on Power Systems, 2007, 22 ( 1 ) : 258- 265.
  • 7Luig A, Bofinger S, Beyer H G. Analysis of confidence intervals for the prediction of regional wind power output [A]. Proc. of the 2001 European Wind Energy Associa- tion Conference [ C ], Copenhagen, Denmark, 2001, 7 : 725-728.
  • 8Lange M, Waldl H P. Assessing the uncertainty of the wind power predictions with regard to specific weather sit- uations[ A]. Proc. of the 2001 European Wind Energy Association Conference [ C ] , Copenhagen, Denmark, 2001, 7: 695-698.
  • 9Matthias Lange, Detlev Heinemann. Relating the uncer- tainty of short-term wind speed predictions to meteorologi- cal situations with methods from synoptic climatology [ A]. European Wind Energy Conference & Exhibition [C], Madrid, Spain, 2003.
  • 10Pinson M P, Siebert N, Kariniotakis G. Forecasting of regional wind generation by a dynamic fuzzy-neural net- work based upscaling approach [ A ]. European wind ener- gy conference & exhibition[ C ], Madrid, Spain, 2003.

二级参考文献12

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2Landberg L.Short-term prediction of the power production from wind farms[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,80:207-220.
  • 3Landberg L.Short-term prediction of local wind conditions[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89:235-245.
  • 4Alexiadis M,Dokopoulos P,Sabsamanoglou H,et al.Short term forecasting of wind speed and related electrical power[J].Solar Energy,1998,63(1):61-68.
  • 5Milligan M,Schwartz M,Wan Y.Statistical wind power forecasting models:Results for U.S.wind farms[A].Windpower 2003 Austin,Texas,2003,(5):18-21.
  • 6Torres J L,Garcia A,Blas M De,et al.Forecast of hourly average wind speed with arma models in navarre(spain)[J].Solar Energy,2005,79:65-77.
  • 7Bossanyi E A.Short-term wind prediction using kalman filters[J].Wind Engineering,1985,9(1):1-8.
  • 8Kariniotakis G,Stavrakis G,Nogaret E.Wind power forecasting using advanced neural network models[J].IEEE Trans on Energy Conversion,1996,11(4):762-767.
  • 9Damousis I G,Dokopoulos P.A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[A].22nd IEEE Power Engineering Society International Conference[C],2001,5(20-24):63-69.
  • 10Madsn H,Kariniotakis G,Nielsen H Aa,et al.A protocol for standardizing the performance evaluation of short-term wind power prediction models[EB/OL].http://anemos.cma.fr.

共引文献20

同被引文献143

引证文献12

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部