期刊文献+

循环图C(12,2)与路P_n的笛卡尔积的交叉数

The Crossing Number of C(12,2)×P_n
原文传递
导出
摘要 循环图C(m,2)表示由圈Cm(v_1v_2…v_mv_1)增加边v_iv_i+2(i=1,2,…,m,i+2(modm))所得到的图,本文证明了循环图C(12,2)与路P_n的笛卡尔积的交叉数是12n. C(m, 2) is a graph obtained from m-cycle Cm(v1…vmv1) by adding edges vivi+2(i = 1, 2,... , m, i + 2(mod m)). It has been proved that the crossing number of cartesian product of Pn with circulant graph C(12, 2) is 12n.
出处 《数学进展》 CSCD 北大核心 2011年第5期587-594,共8页 Advances in Mathematics(China)
基金 国家自然基金资助项目(No.10771062) 教育部"新世纪优秀人才支持计划"(No.NCET-07-0276)
关键词 交叉数 循环图 笛卡尔积 悬挂 crossing number circulant graph Cartesian product path suspension
  • 相关文献

参考文献3

二级参考文献44

  • 1周智勇,黄元秋.笛卡尔积图K_(3,3)×P_n的交叉数[J].湖南师范大学自然科学学报,2007,30(1):31-34. 被引量:7
  • 2West D. B. Introduction to Graph Theory. Beijing: China Machine Press, 2004.
  • 3Garey M R, Johnson D S. Crossing Number is NP-complete. SIAM J. Algeb. Disc. Meth., 1993, 4: 312-316.
  • 4Ringeisen R D, Beineke L W. The Crossing Number of C3xCn. J. Combin. Thoery (Series B), 1978, 24(2): 134-136.
  • 5Kles c M. The Crossing Numbers of Products of Paths and Stars with 4-vertex Graphs J. Graph Theory, 1994, 18:605-614.
  • 6Beineke L W, Ringeisen R D. On the Crossing Numbers of Products of Cycles and Graphs of order Four. J. Graph Theory, 1980, 4:145-155.
  • 7Kles e M. The Crossing Number of K5 xPn. Tatra Mount. Math. Publ., 1999, 18:63-68.
  • 8Lv S X, Huang Y Q. The Crossing Number of K5xSn. Math. Resear. Expos., 2008, 28(3): 445-459.
  • 9Zheng W P, Lin X H, Yang Y S, Deng C R. On the Crossing Numbers of Km xCn and Km,1 xPn Disc. Appl. Math., doi:10.1016/j.dam.2007.09.007.
  • 10Yuan Z H, Huang Y Q. The Crossing Numbers of K2,2,2×Pn. submitted to Adv. Math., 2007.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部