期刊文献+

静定桁架结构截面最优化设计的功定向配置法

WORK METHOD OF DIRECTIONAL ALLOCATION FOR CROSS-SECTION OPTIMIZATION OF STATICALLY DETERMINATE TRUSS
下载PDF
导出
摘要 以Kuhn-Tucker函数的极值条件为出发点,证明多节点位移与多杆内应力约束下结构重量最轻化问题可转化为单约束问题来求解,可将位移—重量分配准则和应力—重量分配准则转化为功定向分配准则。利用功能互等定理,将位移与应力约束统一为功的定向约束,以此为基础构造出功定向配置法,以各承受节点载荷的节点位移作为约束控制点,组成具有正定性质的位移约束;或用位移约束与应力约束的组合,构成具有正定性质的位移与应力约束;结合位移极射法和满应力法获取最优解。并用二杆和六杆静定桁架结构的算例验证相关理论和算法。 According to the extremum condition of Kuhn-Tucker function,it is proved that the weight minimization problem,under displacement constraints of multiple nodes and stress constraints of multiple bars,can be transformed into several optimization problems under single constraint.And,the displacement-weight and the stress-weight distribution criterion can be turned into the directional work-distribution criterion.On the basis of external work being equal to internal energy,the displacement and stress constraints can be changed into uniform constraints of directional work.Thus,the work method of directional allocation is proposed: the nodal displacements of carrying nodal loads are used as controlled points,and are made up of the displacement constraints which constitute a positive definite set.Or,a combination with displacement and stress constraints also constitutes a positive definite set.The optimal solution is obtained by the displacement-extremum-scale method,or a method of combinating with it and fully stress design.At last,two numerical examples of statically determinate 2-bar and 6-bar trusses are used to verify the mentioned theories and algorithmic rules.
出处 《机械强度》 CAS CSCD 北大核心 2011年第5期673-678,共6页 Journal of Mechanical Strength
基金 广西壮族自治区科技厅青年基金(0728013)~~
关键词 静定桁架结构 截面最优化 多约束向单约束的转化 位移与应力约束的关系 功定向配置法 Statically determinate truss Cross-section optimization Transformation of multiple constraints into several single-constraints Relation of displacement and stress constraints Work method of directional allocation
  • 相关文献

参考文献10

  • 1朱朝艳,刘斌,郭鹏飞,张延年.离散变量桁架结构拓扑优化的混合遗传算法[J].机械强度,2004,26(6):656-661. 被引量:8
  • 2Zhou M, Rozvany G I N. DCOC: An optimality criteria method for large systems, Part II: Algorithm[J]. Structural Optimization, 1993, 6: 250- 262.
  • 3Svanberg K. On the convexity and concavity of compliances[ J ]. Structural Optimization, 1994, 7: 42-46.
  • 4Pan Jin Wang De-yu.TOPOLOGY OPTIMIZATION OF TRUSS STRUCTURE WITH FUNDAMENTAL FREQUENCY AND FREQUENCY DOMAIN DYNAMIC RESPONSE CONSTRAINTS[J].Acta Mechanica Solida Sinica,2006,19(3):231-240. 被引量:8
  • 5Bernd Baumann, Bernd Kost. Topology optimization of trusses-random cost method versus evolutionary algorithms [ J ]. Computational Optimization and Applications, 1999, 14: 203-218.
  • 6Rozvany G l N. Stress ratio and compliance based methods in topolo optimization-a critical review[ J]. Structural and Muttidisciplinary Optimization, 2001, 21(2): 109-119.
  • 7Zhou M, Haftka R T. A eomparison of optimality criteria methods for stress and displaeement constraints [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 124(3): 253-271.
  • 8Svanberg K. Global convergence of the stress ratio method for truss sizing [J]. Structural Optimization, 1994, 8: 60-68.
  • 9Bendsce M P, Ben-Tal A, Zowe J. Optimization methods for truss geometry and topology design[ J]. Structural and Multidisciplinay Optimization, 1994, 7(3): 141-159.
  • 10Rychter Z, Musiuk A. Topological sensitivity to diagonal member flps of two-layered statically determinate trusses under worst Ioading[J ]. International Journal of Solids and Structures, 2007, 44( 14-15): 4942-4957.

二级参考文献6

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部