期刊文献+

P_*(κ)线性互补问题的Mehrotra型预估-校正算法复杂性分析(英文)

Complexity of Mehrotra-type Predictor-corrector Algorithm for Monotone Nonlinear Complementarity Problems
下载PDF
导出
摘要 本文提出一种求解单调非线性互补问题的Mehrotra型预估-校正算法.新算法采用不同的自适应更新策略.在尺度化的Lipschitz条件下,证明了新算法的迭代复杂性为O(n2log((x0)Ts0/ε)),其中(x0,s0)为初始点,ε为精度. In this paper we present a Mehrotra-type predictor-corrector algorithm for monotone nonlinear complementarity problem.The Mehrotra heuristic of our algorithm is different from others.Under a scaled Lipschitz condition,we show the algorithm has an O(n2log((x0)Ts0/ε)) iteration complexity,where (x0,s0) is initial point and ε is tolerance.
机构地区 三峡大学理学院
出处 《应用数学》 CSCD 北大核心 2011年第4期691-698,共8页 Mathematica Applicata
基金 the Natural Science Foundation of Hubei Province of China (2008CDZ047)
关键词 非线性互补问题 Mehrotra型预估-校正算法 内点算法 尺度化的Lipschitz条件 多项式复杂性 Nonlinear complementarity problem Mehrotra-type predictor-corrector algorithm Interior point method Scaled Lipschitz condition Polynomial complexity
  • 相关文献

参考文献10

  • 1Cottle R W, Pang J S, Stone R E. The linear complementarity problem[C]//Computer Science and Scien- tific Computing. San Diego,CA.. Academic Press Inc. , 1992.
  • 2SUN Jie,ZHAO Gongyun. Global and local quadratic convergence of a long-step adaptive-mode interior point methods for some monotone variational inequality problems[J]. SIAM Journal on Optimization, 1998,8:123-139.
  • 3Mehrotra S. On the implementation of a (primal-dual) interior point method[J]. SIAM Journal on Opti- mization, 1992,2 : 575-601.
  • 4ZHANG Yin. Solving large-scale linear programs by interior point methods under the Matlab environ- ment[J]. Optimization Methods and Software, 1999,10 : 1-31.
  • 5Salahi M, PENG Jiming, Terlaky T. On Mehrotra type predictor-eorrector algorithms[J]. SIAM Journal on Optimization, 2007,18 : 1377-1397.
  • 6Potra F A,YE Yinyu. Interior-point methods for nonlinear complementarity problems[J]. Journal of Op- fimization Theory and Applications,1996,88(3) :617-642.
  • 7Lu Yanli,ZHANG Mingwang. A wide-neighborhood algorithm for monotone nonlinear complementarity problem[C]//Fifth International Conference on Fuzzy Systems and Knowledge Discovery. Washington, IEEE Computer Society, 2008,498-502.
  • 8Jansen B,Roos C,Terlaky T,Yoshise A. Polynomiality of primal-dual affine scaling algorithms for non- linear complementarity problems[J]. Mathematical Programming, 1997,78 : 315-345.
  • 9Kojima M, Megiddo N, Noma T. Homotopy continuation methods for nonlinear complementarity prob- lems[J ]. Mathematics of Operations Research, 1991,16 : 754-774.
  • 10Wright S J. Primal-dual interior-point methods[M]. Philadelphia:SIAM, 1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部