期刊文献+

向前型分段连续微分方程的数值解(英文)

Numerical Solutions of Differential Equations with Piecewise Constant Arguments of Advanced Type
下载PDF
导出
摘要 本文讨论了向前型分段连续微分方程Euler-Maclaurin方法的收敛性和稳定性,给出了Euler-Maclaurin方法的稳定条件,证明了方法的收敛阶是2n+2,并且得到了数值解稳定区域包含解析解稳定区域的条件,最后给出了一些数值例子用以验证本文结论的正确性. This paper is concerned with the convergence and the stability of Euler-Maclaurin methods for solutions of differential equations with piecewise constant arguments of advanced type.The conditions of stability for the Euler-Maclaurin methods are given.It is proved that the order of convergence is 2n+2.And the conditions under which the numerical stability region contains the analytic stability region are obtained.Finally,several numerical examples are given to demonstrate our main results.
作者 王琦 温洁嫦
出处 《应用数学》 CSCD 北大核心 2011年第4期712-717,共6页 Mathematica Applicata
基金 the National Natural Science Foundation of China(51008084)
关键词 收敛性 稳定性 Euler-Maclaurin方法 分段连续项 Convergence Stability Euler-Maclaurin method Piecewise constant arguments
  • 相关文献

参考文献10

  • 1Akhmet M U,Buyukadall C. On periodic solutions of differential equations with piecewise constant argu- ment[J]. Comput. Math. Appl. , 2008,56 (8) : 2034-2042.
  • 2Ivanov A F. Global dynamics of a differential equation with piecewise constant argument[J]. Nonlinear Anal. ,2009,71(12) :e2384-e2389.
  • 3Muroya Y. Persistence,contractivity and global stability in logistic equations with piecewise constant de- lays[J]. J. Math. Anal. Appl. , 2002,270(2) : 602-635.
  • 4Gurcan F, Bozkurt F. Global stability in a population model with piecewise constant arguments[J]. J. Math. Anal. Appl. , 2009,360 (1) : 334-342.
  • 5Wiener J. Generalized Solutions of Functional Differential Equations[M]. Singapore: World Scientific, 1993.
  • 6YANG Zhanwen,LIU Mingzhu,Nieto J J. Runge-Kutta methods for first-order periodic boundary value differential equations with piecewise constant arguments[J]. J. Comput. Appl. Math. , 2009,233 (4) : 990- 1004.
  • 7LIU Mingzhu, GAO Jianfang, YANG Zhanwen. Oscillation analysis of numerical solution in the θ-meth- ods for equation x'(t) +ax(t) +a1x([t- 1]) = 0 [J]. Appl. Math. Comput. ,2007,186(1):566-578.
  • 8WANG Qi, ZHU Qingyong,LIU Mingzhu. Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type[J]. J. Comput. Appl. Math. ,2011,235(5) :1542-1552.
  • 9LV Wanjin, YANG Zhanwen,LIU Mingzhu. Stability of the Euler-Maclaurin methods for neutral differ- ential equations with piecewise continuous arguments [J]. Appl. Math. Comput. , 2007, 186 (2): 1480- 1487.
  • 10Stoer J ,Bulirsch R. Introduction to Numerical Analysis[M]. New York: Springer-Verlag, 2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部