期刊文献+

一类具有时滞的Beddington-DeAngelis恒化器模型(英文)

A Delayed Beddington-DeAngelis Chemostat Model
下载PDF
导出
摘要 本文研究一类具有增长时滞及脉冲输入的Beddington-DeAngelis恒化器模型,得到了微生物灭绝周期解存在和全局吸引的条件,并证明了系统在适当的条件下是持久的. The dynamical behaviors of a Beddington-DeAngelis chemostat model with delayed response in growth and pulsed input was studied in this paper.We obtaine that some conditions for the existence and the global attractivity of a ‘microorganism-extinction’ periodic solution and prove that the system is permanent under other conditions hold.
出处 《应用数学》 CSCD 北大核心 2011年第4期763-769,共7页 Mathematica Applicata
基金 the National Natural Science Foundation of China(10771179) the Scientific and Technological Project of Henan Province(092102210070)
关键词 恒化器模型 脉冲输入 时滞 持续 灭绝 Chemostat model Impulsive input Time delay Permanence Extinction
  • 相关文献

参考文献10

  • 1Hsu S B, Hubbell S P, Waltman P. A mathematical theory for single-nutrient competition in the continu- ous cultures of micro-organisms[J]. SIAM J. Appl. Math. , 1977,32 (2):366-383.
  • 2H su S B,Tzeng Y H. Plasmid-bearing, plasmid-free organisms competing for two complementary nutri- ents in a chemostat[J]. Math. Biosci. , 2002,179 : 183-206.
  • 3H su S B. A competition model for a seasonally fluctuating nutrient[J]. J. Math. Biol. , 1980,9 (2) : 115-132.
  • 4Pilyugin S S,Waltman P. Competition in the unstirred chemostat with periodic input and washout[J]. SI- AM J. Appl. Math., 1999,59(4) : 1157-1177.
  • 5Hsu S B,LI Chengche. A discrete-delayed model with plasmid-bearing, plasmid-free competition in a che- mostat[J]. Discrete Contin. Dyn. Syst. Set. B, 2005,5 : 699-718.
  • 6Wolkowicz G S K,XIA Huaxing. Global asymptotic behavior of a ehemostat model with discrete delays EJ]. SIAM J. Appl. Math. ,1997,57(4) :1019-1043.
  • 7Freedman H l,So J W-H ,Waltman P. Coexistence in a model of competition in the chemostat incorpora- ting discrete delays[J]. SIAM J. Appl. Math. , 1989,49 (3) : 859-870.
  • 8MENG Xinzhu, LI Zhenqing, Nieto J J. Dynamic analysis of Michaelis-Menten chemostat-type competi- tion models with time delay and pulse in a polluted environment[J]. J. Math. Chem. , 2010,47 (1): 123- 144.
  • 9Lakshmikantham V, Bainov D, Simeonov P. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific, 1989.
  • 10KUANG Yang. Delay Differential Equations with Applications in Population Dynamics[M]. San Diego: Academic Press, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部