摘要
本文研究一类具有增长时滞及脉冲输入的Beddington-DeAngelis恒化器模型,得到了微生物灭绝周期解存在和全局吸引的条件,并证明了系统在适当的条件下是持久的.
The dynamical behaviors of a Beddington-DeAngelis chemostat model with delayed response in growth and pulsed input was studied in this paper.We obtaine that some conditions for the existence and the global attractivity of a ‘microorganism-extinction’ periodic solution and prove that the system is permanent under other conditions hold.
出处
《应用数学》
CSCD
北大核心
2011年第4期763-769,共7页
Mathematica Applicata
基金
the National Natural Science Foundation of China(10771179)
the Scientific and Technological Project of Henan Province(092102210070)
关键词
恒化器模型
脉冲输入
时滞
持续
灭绝
Chemostat model
Impulsive input
Time delay
Permanence
Extinction