摘要
本文探讨在留曼边界条件下带有两食饵趋向和功能Ⅱ反应函数的三物种食物链模型,此模型的主要特征是捕食者捕食速度空间上的临时变化是由食饵的梯度决定的.应用压缩原理,抛物方程的Schauder估计和Lp估计,证明了此模型古典解的全局存在性.
This paper deals with the food chain model in three spices including two-preys-taxis and Holling type-Ⅱ functional response under no flux boundary condition.The central point of this system is that the spatial-temporal variations of the predators' velocity are directed by the preys' gradient.By applying the contraction mapping principle,the parabolic Schauder estimates and parabolic Lp estimates,we prove that there exists a unique global classical solution of this system.
出处
《应用数学》
CSCD
北大核心
2011年第4期770-777,共8页
Mathematica Applicata
关键词
食物链
古典解
不动点
SCHAUDER估计
Lp估计
Food chain
Classical solutions
A fixed point theory
Schauder estimates
Lp estimates