期刊文献+

非线性中立型随机延迟微分方程随机θ方法的稳定性 被引量:1

Stability of the Stochastic Theta Method for Nonlinear Neutral Stochastic Delay Differential Equations
下载PDF
导出
摘要 本文研究非线性中立型随机延迟微分方程随机θ方法的均方稳定性.在方程解析解均方稳定的条件下,证明了如下结论:当θ∈[0,1/2)时,随机θ方法对于适当小的时间步长是均方稳定的;当θ∈ [1/2,1]时,随机θ方法对于任意步长都是均方稳定的.数值结果验证了所获结论的正确性. The paper is concerned with the mean-square (MS) stability of the stochastic theta method for nonlinear neutral stochastic delay differential equations (NSDDEs).Under a sufficient condition of MS stability to NSDDEs,it is proved that the stochastic theta method is MS-stable for every stepsize if θ∈[1/2,1],or MS-stable for sufficiently small stepsize if θ∈[0,1/2).Some examples to illustrate the applicability of our conclusions are presented.
作者 屈小妹
出处 《应用数学》 CSCD 北大核心 2011年第4期865-870,共6页 Mathematica Applicata
基金 国家自然科学基金(10971077)
关键词 中立型随机延迟微分方程 均方稳定性 EULER-MARUYAMA方法 随机θ方法 Neutral stochastic delay differential equations MS-stability Euler-Maruyama method Stochastic theta method
  • 相关文献

参考文献9

  • 1王文强,陈艳萍.中立型随机延迟微分方程Milstein方法的均方稳定性[J].应用数学,2010,23(3):548-553. 被引量:1
  • 2ZHANG Haomin, GAN Siqing, HU Lin. The split-step backward Euler method for linear stochastic delay differential equations[J]. J. Comput. Appl. Math. ,2009,225: 558-568.
  • 3CAO Wanrong, LIU Mingzhu, FAN Zhencheng. MS-stability of the Euler-Maruyama method for stochas- tic differential delay equations[J]. Applied Mathematics and Computation,2004,159: 127-135.
  • 4WU Fuke, MAO Xuerong,Szpruch L. Almost sure exponential stability of numerical solutions for sto- chastic delay differential equation[J]. Numerische Mathematik,2010,115: 681-697.
  • 5王文强.几类非线性随机延迟微分方程数值方法的收敛性与碜定性[D].湘潭:湘潭大学,2007.
  • 6WANG Zhiyong, ZHANG Chengjian. An analysis of stability of Milstein method for stochastic differenti- al equations with delay[J]. Computers and Mathematics with Applications, 2006,51:1445-1452.
  • 7Baker C T, Buckwar E. Exponential stability in p -th mean of solutions, and of convergent Euler-type so- lutions,of stochastic delay differential equations[J]. Journal of Computational and Applied Mathematics, 2005,184:404-427.
  • 8王文强 陈艳萍.线性中立型随机延迟微分方程Milstein方法的均方稳定性.计算数学,:32-212,206.
  • 9MAO Xuerong. Stochastic Differential Equations and Their Applications[M]. 2nd ed. Chichester: Hor- wood, 2007.

二级参考文献10

  • 1王文强,黄山,李寿佛.非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J].计算数学,2007,29(2):217-224. 被引量:10
  • 2Hu Yaozhong,Mohammed Salah-Eldin A,Yan Feng.Discrete-time approximations of stochastic delay equations:the Milstein scheme[J].The Annals of Probability,2004,32(1A):265-314.
  • 3Cao Wanrong,Liu Mingzhu,Fan Zhencheng.MS-stability of the Euler-Maruyama method for stochastic differential delay equations[J].Applied Mathematics and Computation,2004,159:127-135.
  • 4Baker Christopher T H,Buckwar Evelyn.Exponential stability in p-th mean of solutions,and of convergent Euler-type solutions,of stochastic delay differential equations[J].Journal of Computational and Applied Mathematics,2005,184:404-427.
  • 5Wang Zhiyong,Zhang Chengjian.An analysis of stability of Milstein method for stochastic differential equations with delay[J].Computers and Mathematics with Applications,2006,51:1445-1452.
  • 6Hofmann Norbert,Müller-Gronbach Thomas.A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag[J].Journal of Computational and Applied Mathematics,2006,197:89-121.
  • 7Rathinasamy A.Balachandran K.Mean-square stability of Milstein method for linear hybrid stochastic delay integro-differential equations[J].Nonlinear Analysis:Hybrid Systems,2008,2(4):1256-1263.
  • 8Mao Xuerong.Stochastic Differential Equations and their Applications[M].Chichester:Horwood,1997.
  • 9王文强,李寿佛,黄山.非线性随机延迟微分方程Euler-Maruyama方法的收敛性[J].系统仿真学报,2007,19(17):3910-3913. 被引量:6
  • 10王文强,李寿佛,黄山.非线性随机延迟微分方程半隐式Euler方法的收敛性[J].云南大学学报(自然科学版),2008,30(1):11-15. 被引量:9

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部