期刊文献+

三阶隐马氏模型算法及其与一阶隐马氏模型的关系 被引量:2

Algorithms of Third-Order Hidden Markov Model and Its Relationship with First-Order Hidden Markov Model
下载PDF
导出
摘要 为了考虑更多的统计特征,提出了一类三阶隐马氏模型,其中状态转移和输出观测同时取决于当前状态和前面两个状态.研究和推导了这类三阶隐马氏模型中估值问题的向前—向后算法、解码问题的Viterbi算法和学习问题的Baum-Welch算法.对此类三阶隐马氏模型,构造了一个与之等价的一阶隐马氏模型,提出并证明了它们的等价性定理.研究结果丰富了隐马氏模型的算法理论,可为一些实际应用提供更好的方法. In order to consider more statistical characteristics, a class of third-order hidden Markov model is proposed. In this model, both state transition and output observation depend on the current state and on the two preceding states as well. Three algorithms of the third-order hidden Markov model are studied and derived, including the forward-backward algorithm for observation sequence evaluation, the Viterbi algorithm for determining the optimal state sequence, and the Baum-Welch algorithm for training the third-order hidden Markov model. A first-order hidden Markov model equivalent to the third-order hidden Markov model is constructed. A theorem of their equivalence is proposed and proved. This study contributes to the algorithmic theory of the hidden Markov model, and provides a better method to practical applications.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2011年第5期500-507,共8页 Journal of Applied Sciences
基金 国家自然科学基金(No.30871341) 上海市重点学科基金(No.S30104) 上海市教委重点学科建设项目基金(No.J50101) 科技部重大科技专项基金(No.2008ZX10002-017 No.2008ZX10002-020 No.2009ZX09103-686)资助
关键词 一阶隐马氏模型 三阶隐马氏模型 向前-向后算法 VITERBI算法 Baum—Welch算法 first-order hidden Markov model, third-order hidden Markov model, forward-backward algorithm, Viterbi algorithm, Baum-Welch algorithm
  • 相关文献

参考文献18

  • 1BAUM L E, PETRIE T. Statistical inference for probabilistic functions of finite state Markov chains [J]. The Annals of Mathematical Statistics, 1966, 37(6): 1554-1563.
  • 2BAUM L E, PETRIE T, SOULES G, WEISS N. A maximization technique ocurring in the statistical analysis of probabilistic functions of Markov chains [J]. The Annals of Mathematical Statistics, 1970, 41(1): 164-171.
  • 3EPHRAIM YI MERHAV N. Hidden Markov processes [J]. IEEE Transactions on Information Theory, 2002, 48(6): 1518-1569.
  • 4BILMES J A. What HMMs can do? [J]. IEICE Trans- actions on Information and Systems, 2006, E89-D(3): 1-24.
  • 5朱明,郭春生.隐马尔可夫模型及其最新应用与发展[J].计算机系统应用,2010,19(7):255-259. 被引量:25
  • 6RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
  • 7Xu Dong, LIU Haijun, WANG Yifei. BSS-HMM3s: an improved HMM method for identifying transcription factor binding sites [J]. DNA Sequence, 2005, 16(6): 403-411.
  • 8MARI J F, HATON J P, KRIOUILE A. Automatic word recognition based on second-order hidden markov models [J]. IEEE Transactions on Speech and Audio Processing, 1997, 5(1): 22-25.
  • 9史笑兴,王太君,何振亚.二阶隐马尔可夫模型的学习算法及其与一阶隐马尔可夫模型的关系[J].应用科学学报,2001,19(1):29-32. 被引量:16
  • 10周顺先,林亚平,王耀南,易叶青.基于二阶隐马尔可夫模型的文本信息抽取[J].电子学报,2007,35(11):2226-2231. 被引量:25

二级参考文献57

共引文献63

同被引文献25

  • 1梁以敏,黄德根.基于完全二阶隐马尔可夫模型的汉语词性标注[J].计算机工程,2005,31(10):177-179. 被引量:25
  • 2Smith D R. The design of divide and conquer algorithms [J]. Science o] Computer Programming, 1985, 5: 37-58.
  • 3Dreyfus S. Richard Bellman on the birth of dynamic programming [J]. Operations Research, 2002, 50(1): 48-51.
  • 4Eddy S R. What is dynamic programming? [J]. Nature Biotechnology, 2004, 22(7): 909-910.
  • 5Viterbi A J. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm [J]. IEEE Transactions on Information Theory, 1967, 13(2): 260-269.
  • 6Omura J K. On the Viterbi decoding algorithm [J]. IEEE Transactions on Information Theory, 1969, 15(1): 177-179.
  • 7Viterbi A J. Convolutional codes and their performance in communication systems [J]. IEEE Transactions on Communications Technology, 1971, 19(5): 751-772.
  • 8Forney G D. Convolutional codes II. Maximum-likelihood decoding [J]. Information and Con- trol, 1974, 25(3): 222-266.
  • 9Levinson S E, Rabiner L R, Sondhi M M. An introduction to the application of the theory of probabilistic functions of Markov process to automatic speech recognition [J]. The Bell System Technical Journal, 1983, 62(4): 1035-1074.
  • 10Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recogni- tion [J]. Proceedings of the IEEE, 1989, 77(2): 257-286.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部