期刊文献+

基于鲁棒时变卡尔曼滤波估计的无人机视觉编队 被引量:1

Time-Varying Kalman Filter Estimation for Vision Based Unmanned Aerial Vehicle Formation Flight
下载PDF
导出
摘要 针对一般多输入多输出不确定系统,提出一种基于鲁棒时变卡尔曼滤波的估计算法.该方法将时变卡尔曼滤波与自适应神经网络相结合,利用自适应神经网络克服外界非线性不确定因素,采用两个误差信号对其进行训练以提高估计精度,并对估计误差有界性进行证明.将该方法用于无人机视觉编队视线信息的状态估计,仿真结果表明该算法能够很好地估计不确定机动长机的加速度,实现了僚机对长机的有效跟踪. A robust time-varying Kalman filter for a class of multi-input multi-output uncetain system is proposed. This method combines a time-varying Kaiman filter with an adaptive neural network. It can overcome nonlinear uncertainty with the adaptive neural network trained by two error signals. The method can improve approaching precision, and the boundedness of the estimation error is proven by the Lyapunov theory. The proposed method is used to design state estimation of leader in the unmanned aerial vehicle(UAV) formation flight. Simulation results show that the method can estimate acceleration of leader flying with uncertain maneuvers. The follower can effectively track the leader. Thus effectiveness of the method is validated.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2011年第5期545-550,共6页 Journal of Applied Sciences
基金 国家自然科学基金(No.61074007) 空军工程大学研究生创新基金资助
关键词 鲁棒时变卡尔曼滤波 无人机 视觉编队 自适应神经网络 robust time-varying Kalman filter, unmanned aerial vehicle(UAV), vision-based formation flight, adaptive neural network
  • 相关文献

参考文献12

  • 1樊琼剑,杨忠,方挺,沈春林.多无人机协同编队飞行控制的研究现状[J].航空学报,2009,30(4):683-691. 被引量:103
  • 2SHIN H S, KIM T H, TAHK M J. Nonlinear formation guidance law with robust disturbance observer [J]. International Journal of Aeronautical &: Space Sciences, 2009, 1 (10): 30-36.
  • 3CAMPA G, GU Y, SEANOR B. Design and flighttesting of nonlinear formation control laws [J]. Control Engineering Practice, 2007,15 (9): 1077-1092.
  • 4周翟和,刘建业,赖际舟.组合导航直接滤波模型中的高斯粒子滤波[J].应用科学学报,2009,27(1):97-101. 被引量:4
  • 5JOHNSON E N, CALISE A J, WATANBE Y, HA J, NEIDHOEFER J C. Real-time vision-based relative navigation [C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Colorado, 2006: 1- 46.
  • 6WATANABE Y, JOHNSON E N, CALISE A J. Visionbased approach to obstacle avoidance [C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, 2005: 1-10.
  • 7HOUGH M E. Improved performance of recursive tracking filters using batch initialization and process noise adaptation [J]. AIAA Journal of Guidance, Control and Dynamics, 1999, 22(5): 675-681.
  • 8LI X R, JILKOV V P. Survey of manuvering target tracking, Part I: Dynamic models [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364.
  • 9SATTIGERI R, VALISE A J, JOHNSON E N. Visionbased target tracking with adaptive target state estimator [C]//AIAA Guidance, Navigation and Control Conference and Exhibit, South Carolina, 2007: 1-12.
  • 10ROBERT G B, PATRICK Y C. Introduce to random signals and applied kalman filtering [M]. New York: John Wiley and Sons, 1997: 291-292.

二级参考文献32

  • 1康国华,刘建业,祝燕华,熊智.GPS/SST/SINS组合导航系统研究[J].应用科学学报,2006,24(3):293-297. 被引量:16
  • 2季斌南.长航时无人机的特点、作用及发展动向[J].国际航空,1997(2):28-30. 被引量:29
  • 3NORDLUND P J. Sequential Monte Carlo filters and integrated navigation[D]. LinkSping: Linkoping University, 2002: 67-71.
  • 4MILLER I, CAMPBELL M. Particle filtering for map-aided localization in sparse GPS environments[C]//IEEE International Conference on Robotics and Automation, 2008: 1834-1841.
  • 5GIREMUS A, TOURNERET J Y, CALMETTES V. A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements [J]. Signal Processing, 2007, 55 (4): 1275-1285.
  • 6KOTECHA J H, DJURIC P M. Gaussian particle filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601.
  • 7YANG Dongkai, ZHOU Xinli. U-GPF information fusion algorithm for GPS/DR integrated positioning system[C]// International Conference on Machine Learning and Cybernetics, Hong Kong, 2007: 1424-1427.
  • 8KOTECHA J H, DJURIC P M. Gaussian sum particle filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2603-2613.
  • 9GIREMUS A, DOUCET A, CALMETTES V, TOURNERET J Y. A Rao-blackwellized particle filter for INS/GPS integration [J]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004:964-967
  • 10MIKHALEV A, ORMONDROYD R F. Comparison of Hough transform and particle filter methods of emitter geolocation using fusion of TDOA data[C]// IEEE Workshop on Positioning, Navigation and Communication, 2007: 121-127.

共引文献105

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部