期刊文献+

一种改进的椭圆曲线标量乘的快速算法 被引量:6

Fast Algorithm of Scalar Multiplication on Emptic Curve Cryptosystem
下载PDF
导出
摘要 椭圆曲线密码体制(ElliPtic Curve Cryptosystem,简称ECC)是最有效的公钥密码体制之一,密钥更短、安全性更强。点乘和标量乘是椭圆曲线密码体制中的核心运算,是最耗时的运算。宽度w的非相邻型(w-NAF)算法通常被用来加速椭圆曲线上的标量乘,通过对这种算法的改进和优化,提高算法的效率,并结合分段并行理论提出了一种双标量乘法算法。对新算法进行了分析和测试,其效率在普通算法的基础上有明显提高,具有实用性。 Elliptic Curve Cryptosystem(ECC) is one of the most effective public-key cryptosystems, shorter key, higher security. Point multiplication and scalar multiplication of points are key operations in el- liptic curve cryptograph. They are the the costliest computations. Width- w non-adjacent-form( ω- NAF) algorithm is usually used to speed up the operation of the point multiplication on elliptic curves cryptograph. Some improvements are done to make it more effective in this paper. Furthermore, a new algorithm of double scalar multiplication is put forward combined with the subsection and parallel method. This paper gives a detailed analysis and precise measure of the new algorithm. The improved algorithm is much more efficient than before, thus making it a functional algorithm of excellent value.
作者 白羽 范恒英
出处 《西南科技大学学报》 CAS 2011年第3期48-52,共5页 Journal of Southwest University of Science and Technology
关键词 椭圆曲线密码体制 点乘 标量乘 w-NAF Elliptic curve cryptosystem Point multiplication Scalar multiplication ω -NAF
  • 相关文献

参考文献5

  • 1SOLINAS J A. An improved algorithm for arithmetic on a family of elliptic curves [J]. Springer-Verlag, 1997, In Proceedings of CRYPTO 97, LNCS 1294, 1997:357 - 371.
  • 2FOROUZAN B A.密码学与网络安全[M].北京:清华大学出版社,2009.
  • 3HANKERSON D.椭圆曲线密码学导论[M].电子工业出版社,2005.
  • 4张茹,刘明业.直接计算2~kP改进GF(2~m)域的随机点点乘运算[J].兵工学报,2005,26(3):372-374. 被引量:2
  • 5GUAJARDJO J, PAAR C. Efficient algorithms for elliptic curve cryptosystems [ C ]. Advances in Cryptology, Proceedings of Eurocrypt 97. Springer-Vcrlag, 1997:342 - 356.

二级参考文献5

  • 1Julio Lopez, Ricardo Dahab. An Overview of Elliptic Curve Cryptography [ DB/OL ]. http: citeseer, ift. psu. edu./333066, html,2000/2004 - 12 - 1.
  • 2Std 1363 - 2000, IEEE Standard Specifications for Public-Key Cryptograph [ S ].
  • 3Jerome A. Solineas. Efficient arithmetic on Koblitz curves [ J ].Designs, Codes and Cryptography, 2000, 19 : 125 - 178.
  • 4Yasuyuki SAKAI, Kouichi SAKURAI. Efficient scalar multiplications on elliptic curves with direct computations of several doublings[ C ]. IEICE Trans. Fundamentals, 2001. E84 - a(1) : 120 - 129.
  • 5Guajardo J, Paar C. Efficient algorithms for elliptic curve cryptosystems [ A ]. Advances in Cryptology-CRYPTO' 97 [ C ].Berlin : Springer-Verlag, 1997. 342 - 356.

共引文献1

同被引文献57

  • 1汪朝晖,陈建华,涂航,李莉.素域上椭圆曲线密码的高效实现[J].武汉大学学报(理学版),2004,50(3):335-338. 被引量:13
  • 2刘鹤,陈运,吴震,陈俊,朱冰.真实硬件环境下针对椭圆曲线密码体制的简单功耗分析攻击[J].成都信息工程学院学报,2011,26(1):1-4. 被引量:1
  • 3K. Fong, D. Hankerson, J. Lopez, et al. Field inversion and point halving revisited[J]. IEEE Transactions on Computers, 2004,53(8) : 1047-1059.
  • 4M. Ciet, K. Lauter, M. Joye, et al. Trading inversions for multiplications in elliptic curve cryptography. Designs, Codes and Cryptography,2006,39(2) : 189-206.
  • 5Koblitz N. Elliptic curve cryptosystems[J]. Mathematics of computation, 1987 (48) : 203-209.
  • 6Miller V S. Use of elliptic curves in cryptography[C] //Procee- dings of CRYPTO'85. LNCS 218, Springer, 1986 : 417-426.
  • 7Lim C H, Lee P J. More flexible exponentation with precompu- ration Advances in Cryptology[C] // Crypto' 94. Springer-Ver- lag, Berlin, 1994:95-107.
  • 8Yang W C, Lin K M, Laih C S. A precomputation method for el- liptic curve point multiplication[J]. Journal of the Chinese Insti- tute of Electrical Engineering, 2002,9 (4) : 339-344.
  • 9Lo G W. The study and implementation on elliptic curve digital signature sehemes[D]. Taiwan,NCKU, 2000.
  • 10Fong K, Hankerson D, Lopez J, et al. Field inversion and point halving revisited [J].IEEE Transactions on Computers, 2004, 53(8) : 1047-1059.

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部