期刊文献+

波群内单个波的波陡分布与波破碎 被引量:1

The steepness distributions and break of individual waves in wave groups
下载PDF
导出
摘要 对波群内单个波的波陡分布和波破碎进行了实验研究。研究结果是,波群中波动的最大振幅出现在波群前部而不是出现在波群中央,这种不对称性导致波群前部单个波出现大波陡的概率大于后部单个波出现大波陡的概率;进一步的波破碎统计发现波群前部单个波破碎的频率是后部单个波破碎频率的4倍。因此认为,波群结构的不对称性能够导致单个波发生破碎的位置出现在波群前部,这对风浪研究具有重要意义。 In this paper, the steepness distributions and breaking of individual waves in wave groups have been studied. The maximum amplitude of individual waves occurs in the front of a wave group rather than in the middle. Such asymmetry of a wave group structure makes it more probable that larger steepness occurs on the individual waves in the front of the wave group than those in the rear. In other words, the average steepness of the individual waves at the beginning of a wave group is larger, resulting in higher probability that the individual waves in the front of the wave group break according to the statistics of wave breaking (the breaking probability of the individual waves in the front of a wave group is about four times of that in the rear of the wave group). Since wave breaking plays very important role in wind wave growth, these results are important for further study of wind wave.
出处 《海洋科学》 CAS CSCD 北大核心 2011年第9期96-106,共11页 Marine Sciences
基金 教育部新世纪人才支持计划(NCET-08-0509) 国家自然科学基金(40576007)
关键词 波群 波陡 波破碎 wave group wave steepness wave breaking
  • 相关文献

参考文献16

  • 1Donelan M A, Longuet-Higgins M S, Turner J S. Whitecaps [J]. Nature, 1972, 239:449-451.
  • 2Thorpe S A, Humphries P N. Bubbles and breaking waves [J]. Nature, 1980, 283: 463-465.
  • 3Su M Y. Large, steep waves, wave grouping and breaking [C]//Webster W C. Proc 16th Symposium on Naval Hydrodynamics. Berkeley: ONR, 1986.
  • 4Holthuijsen L H, Herbers T H C. Statistics of breaking waves observed as whitecaps in the open sea [J]. J Phys Oceanogr, 1986, 16: 290-297.
  • 5Banner M L, Babanin A V, Young I R. Breaking probability for dominant waves on the sea surface [J]. J Phys Oceanogr, 2000, 30:3145-3160.
  • 6Longuet-Higgins M S. Statistical properties of wave groups in a random sea state [J]. Phil Trans R Soc Lond,1984,312(A):219-250.
  • 7文圣常 余宙文.海浪理论与计算原理[M].北京:科学出版社,1985..
  • 8Cartwright D E, Longuet-Higgins M S. The statistical distribution of the maxima of a random function [J]. Proc Roy Soc London, 1956, 237(1209): 212-232.
  • 9Kimura A. Statistical properties of random wave groups [C]// Billy L E. Proc 17th Int Conf on Coastal Eng. Sydney Australia, New York: ASCE 1980.
  • 10Nolte K G, Hsu F H. Statistics of larger waves in a sea state [J]. J Waterway, Port, Coastal Ocean Div, 1972, 105: 389-404.

共引文献14

同被引文献12

  • 1李红霞,唐友刚,胡楠,郑宏宇.船舶横摇非线性阻尼系数识别[J].天津大学学报,2005,38(12):1042-1045. 被引量:10
  • 2李积德.船舶耐波性[M].哈尔滨:哈尔滨工程大学出版社,2001:34-74.
  • 3Nayfeh A H, Sanchez N E. Stability and complicated rol- ling responses of ship in regular beam seas [ J ]. Interna- tional Shipbuilding Progress, 1990,37 (410) : 177-198.
  • 4Taylan M. Static and dynamic aspects of a capsize pheno- menon [ J]. Ocean Engineering,2003,30(3 ) :331-350.
  • 5Francescutto A. Intact ship stability:the way ahead [ J ]. Marine Technology,2004,41 ( 1 ) :31-37.
  • 6Bikdash M, Balachandran B, Nafey A H. Melnikov analysis for a ship with a general roll-damping model [ J ]. Nonlinear Dynamics ,1994,6( 1 ) :101-124.
  • 7Morrall A. The gaul disaster:a investigation into the loss of a large stern trawler [ J]. Naval Architect, 1981 (5) : 391-440.
  • 8黄昊,郭海强,朱仁传,缪国平.粘性流中船舶横摇阻尼计算[J].船舶力学,2008,12(4):568-573. 被引量:22
  • 9朱仁传,郭海强,缪国平,余建伟.一种基于CFD理论船舶附加质量与阻尼的计算方法[J].上海交通大学学报,2009,43(2):198-203. 被引量:47
  • 10裴玉华,郑桂珍,丛培秀.海浪的波陡分布[J].中国海洋大学学报(自然科学版),2007,37(S1):73-77. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部