期刊文献+

一类分布时滞不确定系统的鲁棒非脆弱保性能控制器设计 被引量:2

Robust and non-fragile guaranteed cost controller design for uncertain systems with distributed delay
原文传递
导出
摘要 研究了一类具有分布时滞的线性不确定系统的鲁棒非脆弱保性能控制问题.考虑分布时滞系统和状态反馈控制器均具有时变不确定性,通过构造新的含三重积分项的Lyapunov-Krasovskii泛函,并结合不等式推导技巧,以线性矩阵不等式形式给出了系统鲁棒非脆弱保性能控制器存在的充分条件.该方法保证了给定的二次性能函数不超过一个确定的界并且是分布时滞相关的.仿真实例表明了该方法的可行性和有效性. The robust and non-fragile guaranteed cost control of uncertain linear systems with distributed delay is investigated.Both the distributed-delay system and the state feedback controller are assumed to have time-varying uncertainties.A sufficient condition in terms of linear matrix inequality is established for the existing of the robust non-fragile guaranteed cost controller by constructing new Lyapunov-Krasovskii functional with triple-integral term and using inequality technique.The proposed approach can keep the quadratic performance function below a supper bound and delay-dependent.Simulation examples show the effectiveness and feasibility of the method.
出处 《控制与决策》 EI CSCD 北大核心 2011年第10期1520-1524,1529,共6页 Control and Decision
关键词 LYAPUNOV-KRASOVSKII泛函 分布时滞 非脆弱 保性能控制 线性矩阵不等式 Lyapunov-Krasovskii functional distributed delay non-fragile guaranteed cost control linear matrix inequality
  • 相关文献

参考文献14

  • 1Keel L H, Bhattacharyya S P. Robust, fragile or optimal[J]. IEEE Trans on Automatic Control, 1997, 42(8): 1098- 1105.
  • 2Famui A D, Dorato P, Abdallah C T, et al. Robust non- fragile LQ controller: The static state feedback case[J]. Int J of Control, 2000, 73(2): 159-165.
  • 3Yang G H, Wang J L. Non-fragile H∞ control for linear systems with multiplicative gain variations[J]. Automatica, 2001, 37(5): 727-737.
  • 4王武,杨富文.不确定时滞系统的时滞依赖鲁棒非脆弱H_∞控制[J].控制理论与应用,2003,20(3):473-476. 被引量:39
  • 5关新平,邬晶,龙承念.不确定时滞系统保性能弹性控制器的设计[J].控制理论与应用,2003,20(4):619-622. 被引量:9
  • 6翟丁,张庆灵,刘国义,张友.一类时滞线性系统的鲁棒非脆弱控制器设计[J].控制与决策,2006,21(5):559-562. 被引量:15
  • 7付兴建,刘小河.带不确定时滞的中立型系统之鲁棒非脆弱保性能控制[J].控制理论与应用,2008,25(5):938-942. 被引量:4
  • 8Magdi S M, Yah S, Hazem N N. Resilient observer- based control of uncertain time-delay systems[J]. Int J of Innovative Computing, Information and Control, 2007, 3(2): 407-418.
  • 9Lien C H. Non-fragile guaranteed cost control for uncertain neutral dynamic systems with time-varying delays in state and control input[J]. Chaos, Solitons and Fractals, 2007, 31(4): 889-899.
  • 10Li Y M, Xu S Y, Zhang B Y, et al. Delay-dependent guaranteed cost control for uncertain neutral systems with distributed delays[J]. Int J of Control, Automation and Systems, 2008, 6(1): 15-23.

二级参考文献33

  • 1翟丁,张庆灵,刘国义,张友.一类时滞线性系统的鲁棒非脆弱控制器设计[J].控制与决策,2006,21(5):559-562. 被引量:15
  • 2KOKAME H, KOBAYASHI H, MORI T. Robust H∞ performance for linear delay-differential systems with time-varying uncertainties[J]. IEEE, Trans on Automatic Control, 1998,43(2) :223- 226.
  • 3de SOUZA C E, LI Xi. Delay-dependent robust H∞ control of uncertain linear state-delayed systems [J]. Automatica, 1999,35(9): 1313- 1321.
  • 4CAO Yongyan, SUN Youxian, LAM J. Delay-dependent robust H∞ control for uncertain systems with time-varying delays [ J ]. IEE Proc-Control Theory and Applications, 1998, 145(3) : 338 - 344.
  • 5KEEL L H, BHATTACHARYYA S P. Robust, fragile, or optimal[J]. IEEE Trans on Automatic Control, 1997,42(8) : 1098 - 1105.
  • 6FAMULARO D, DORATO P, ABDALLAH C T, et al. Robust non-fragile LQ controller: the static state feedback case [ J]. Int J Control, 2000,73(2):159- 165.
  • 7YANG Guanghong, WANG Jianliang, LIN Chong. H∞ control for linear systems with additive controller gain variation [J]. Int J Control, 2000,73(16):1500- 1506.
  • 8LI H Z, NICULESCU S I, DUGARD L, et al. Robust guaranteed cost control of uacertain linear time-delay systems using dynamic output feedback [ J]. Mathonatics and Computers in Simulation, 1998,45:349 - 358.
  • 9MOHEIMANI S O R, PETERSEN I R. Guaranteed cost control of uncertain systems with a time-multiplied quadratic cost function: an approach based on linear matrix inequalities [J]. Automatica, 1998,34(5) :651 - 654.
  • 10KEEl. L H, BHATTACHARYYA S P. Robust fragile or optimal[J]. IEEE Trans on Automatic Control, 1997,42(8):1098- 1105.

共引文献58

同被引文献22

  • 1翟丁,张庆灵,刘国义,张友.一类时滞线性系统的鲁棒非脆弱控制器设计[J].控制与决策,2006,21(5):559-562. 被引量:15
  • 2Watts D J, Strogatz S H.Collective dynamics of “small-world”networks [J] .Nature,1998,393( 6684) : 440-442.
  • 3Barabasi A L,Albert R.Emergence of scaling in random net-works[J].Science, 1999,286(5439) :509-512.
  • 4Souza C E,Li X.Delay-dependent ;:obust Hcc control of uncer-tain linear state-delayed systems[J].Automatica, 1999,35(9):1313-1321.
  • 5Zhou J,Lu J,Adaptive synchronization of an uncertain com-plex dynamical network[J].IEEE Transactions on AutomaticControl,2006,51(4) :652-656.
  • 6Sorrentino F,di Bernardo M,Garofalo F.Pinning-controllabilityof complex networks[J].Phys Rev E,2007,75(4).
  • 7Porfiri M,di Bernardo M.Criteria for global pinning control-lability of complex networks[J].Automatica, 2008, 44 (12):3100-3106.
  • 8Wang Lei, Sun Youxian.Robustness of pinning a generalcomplex dynamical network[J].Physics Letters A, 2010, 374.15/16):1699-1703.
  • 9Chang S S L, Peng T K C.Adaptive guaranteed cost con-trol of system with uncertain parameters[J] .IEEE Trans onAutoma Control, 1972,17(4) :474-483.
  • 10Lien C H.Non-fragile guaranteed cost control for uncer-tain neutral dynamic systems with time-varying delays instate and control input[J].Chaos, Solitons and Fractals,2007,31(4):889-899.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部