期刊文献+

随机需求下闭环供应链网络设施竞争选址模型研究 被引量:17

Study on location model of facility competition for closed-loop supply chain network with random demands
原文传递
导出
摘要 利用均衡理论和变分不等式研究工具,建立了随机需求情形下多层竞争型闭环供应链网络均衡模型,并在此基础上,构建了均衡约束数学规划模型,即设施竞争选址模型.利用均衡模型来捕捉由新进设施的进入所引起的网络均衡状态的变化,并将其引入位置决策过程.根据模型特点,提出了遗传算法与修正投影算法相结合的求解策略.最后利用提出的模型和求解算法对算例进行计算与分析,得到了网络竞争趋势变化情况、新设施的位置策略及其生产运营决策. By using the methods of equilibrium theory and variational inequality,a multi-tiers competitive closed-loop supply chain network equilibrium model with random demands is proposed.Based on this model,a mathematical program with equilibrium constraints for the location model of facility competition is developed.The equilibrium model is used to capture the change of equilibrium state for the network resulting from the entering facilities,and incorporate the effect of changes directly into the location decision model.According to the characteristic of the model,a solution method of integrating the genetic algorithm and the modified projection method is built to solve the problem.Finally,numerical examples are solved and analyzed by using the proposed model and algorithm,the station of competitive developing trends for the network,and the location decision for the entering facilites and the manufacturing and operation decision are obtained.
出处 《控制与决策》 EI CSCD 北大核心 2011年第10期1553-1561,共9页 Control and Decision
基金 国家自然科学基金项目(71071142) "浙江省高校人文社科重点研究基地--标准化与知识产权管理"资助
关键词 闭环供应链网络 均衡模型 设施竞争 均衡约束数学规划 closed loop supply chain network equilibrium model facilities competition mathematical program with equilibrium constraints
  • 相关文献

参考文献16

  • 1Fleischmann M, Beullens P, Bloemhof-Ruwaard J M, et al. The impact of product recovery on logistics network design[J]. Production Operations Manage, 2001, 10(2): 156-173.
  • 2Schultmann F, Engels B, Rentz O. Closed-loop supply chains for Spent batteries[J]. Interfaces, 2003, 33(6): 57- 71.
  • 3代颖,马祖军,刘飞.再制造闭环物流网络优化设计模型[J].中国机械工程,2006,17(8):809-814. 被引量:26
  • 4Zhou G, Cao Z, Qi F, et al. A genetic algorithm approach on a logistics distribution system with uncertain demand and product return[J]. World J of Modeling and Simulation, 2006, 2(2): 99-108.
  • 5El-Sayed M, Aria N, El-Kharbotly A. A stochastic model for forward-reverse logistics network design under risk[J]. Computers and Industrial Engineering, 2010, 58(3): 423- 431.
  • 6Tobin R L, Friesz T L. Spatial competition facility location models: Definition, formulation and solution approach[J]. Annals of Operations Research, 1986, 6(3): 49-74.
  • 7Friesz T L, Tobin R L, Miller T C. Existence theory for spatially competitive network facility location models[J]. Annals of Operations Research, 1989, 18(1): 267-276.
  • 8Miller T' C, Friesz T L, Tobin R L. Heuristic algorithms for delivered price spatially competitive network facility location problems[J]. Annals of Operations Research, 1992, 34(1): 177-202.
  • 9Cavazzuti E, Pappalardo M, Passacantando M. Nash equilibria, variational inequalities, and dynamical systems[J]. J of Optimization Theory and Applications, 2002, 14(3): 491-506.
  • 10徐庆,朱道立,鲁其辉.Nash均衡、变分不等式和广义均衡问题的关系[J].管理科学学报,2005,8(3):1-7. 被引量:24

二级参考文献28

  • 1顾巧论,陈秋双.再制造/制造系统集成物流网络及信息网络研究[J].计算机集成制造系统,2004,10(7):721-726. 被引量:53
  • 2顾巧论,陈秋双.再制造/制造系统集成物流网络扩展模型研究[J].信息与控制,2004,33(5):618-622. 被引量:10
  • 3马祖军,张殿业,代颖.再制造逆向物流网络优化设计模型研究[J].交通运输工程与信息学报,2004,2(2):53-58. 被引量:55
  • 4马祖军,代颖,刘飞.再制造物流网络的稳健优化设计[J].系统工程,2005,23(1):74-78. 被引量:54
  • 5Nash J. Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences U. S. A, 1950, 36: 48-49.
  • 6Kuhn H W, Harsanyi J C, Selten R, Weibull J W, vanDamme E, Nash J F, Hammerstein P.The work of John F Nash[J]. Duke Mathematical Journal, 1995,81(1):1-29.
  • 7Cachon G P, Netessine S. Game theory in supply chain analysis[A]. Supply Chain Analysis in E-business Era[M]. Boston: Kluwer, 2003.
  • 8Baye M R, Tian G Q, Zhou J X. Characterization of the existence of equilibria in games with discontinuous non-quasiconcave payoffs[J]. Review of Economic Studies, 1993,60:935-948.
  • 9Nishimura K, Friedman J. Existence of Nash equilibrium in n person games without quasi-concavity[J]. International Economic Review, 1981, 22: 637-648.
  • 10Zhu D L. Augmented Lagrangian theory, duality and decomposition methods for variational inequlity problems[J]. Journal of Optimization Theory and Applications, 2003, 117(1): 195-216.

共引文献48

同被引文献255

引证文献17

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部