期刊文献+

共表达甘油脱氢酶和二羟丙酮激酶对大肠杆菌生长及甘油代谢的影响 被引量:1

Effects on growth and glycerol metabolism in E.coli by coexpression protein GldA and DhaKLM
下载PDF
导出
摘要 考察共表达甘油脱氢酶(GldA)和二羟丙酮激酶(DhaKLM)对大肠杆菌生长及甘油代谢的影响。结果表明:在好氧条件下,共表达甘油脱氢酶及二羟丙酮激酶可以提高大肠杆菌利用甘油合成菌体的效率,利用等量的甘油,重组菌最高菌密度比对照菌提高了70%,细胞干质量为3.54 g(以每升发酵液计)。在厌氧条件下,仅共表达甘油脱氢酶并不能促进大肠杆菌的甘油代谢,而同时共表达甘油脱氢酶和二羟丙酮激酶可以明显提高大肠杆菌代谢甘油的能力,每克菌体消耗的甘油量提高了42%,每克干细胞中达11.08 g,代谢产物组成也发生显著变化,乙酸成为主要产物。这说明共表达gldA及dhaKLM基因能有效促进大肠杆菌好氧利用甘油生长及厌氧甘油代谢的能力。 The effects on growth and glycerol metabolism in E. coli by overexpressing the glycerol dehydro- genase and dihydroxyacetone kinase were investigated. The results showed that coexpressing of glycerol dehydrogenase and dihydroxyacetone kinase could improve the efficiency of cell synthesis by 70% under recombinant E. coli under anaerobic condition and the dry cell weight(DCN) reached 3.54 g/L. Under anaerobic condition, only overexpressing glycerol dehydrogenase without dihydroxyacetone kinase could not improve the ability of glycerol metabolism in E. coli. However, the ability of glycerol metabolism was significantly improved by coexpressing glycerol dehydrogenase and dihydroxyacetone kinase in recombinant E. coli increased by 42% compared with the wild strain, and 11.08 g/g DCW glycerol was reached. Product composition of the recombinant changed by using acetate as the major product.
出处 《生物加工过程》 CAS CSCD 2011年第5期59-64,共6页 Chinese Journal of Bioprocess Engineering
基金 国家重点基础研究发展计划(973计划)资助项目(2009CB724700)
关键词 二羟丙酮激酶 大肠杆菌 甘油脱氢酶 dihydroxyacetone kinase E. coli glycerol dehydrogenase
  • 相关文献

参考文献14

  • 1Yazdani S S,Gonzalez R.Anaerobic fermentation of glycerol:a path to economic viability for the biofuels industry[J].Curr Opin Biotechno1,2007,18(3):213-219.
  • 2Ma Fangrui,Hanna M A.Biodiesel production:a review[J].Biores Technol,1999,70(1):1-15.
  • 3McCoy M.An unlikely impact:growth of biodiesel has big implications for the oleochemical industry[J].Chem Eng News,2005,83:19-20.
  • 4Bell B M,Briggs J R,Campbell R M,et al.Glycerin as a renewable feedstock for epichlorohydrin production:the GTE process[J].Clean,2008,36(8):657-661.
  • 5Zhang Xueli,Shanmugam K T,Ingram L O.Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli[J].Appl Environ Microbiol,2010,76(8):2397-2401.
  • 6Shams Y S,Gonzalez R.Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products[J].Metab Eng,2008,10(6):340-351.
  • 7Nielsen J,Villadsen J,Lidén G.Bioreaction engineering principles[M].New York:Plenum,2003:60-73.
  • 8Neidhardt F C,Bloch P L,Smith David F.Culture medium for Enterobacteria[J].J Bacterio1,1974,119(3):736-747.
  • 9Joseph S,David W R.Molecular cloning[M].3rd ed.New York:Cold Spring Harbor Laboratory Press,2001:1523-1574.
  • 10Komberg H L,Reeves R E.Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli[J].Biochem J,1972,128:1339-1344.

二级参考文献9

共引文献10

同被引文献15

  • 1张永生,高辉,王艳萍.克拉维酸发酵液中碳源——甘油含量的比色法测定[J].天津科技大学学报,2006,21(1):15-17. 被引量:23
  • 2Zhao L,Zheng Y,Ma X,et al. Effets of overexpression of glycerol dehydrogenase and 1,3-propandediol oxidoreductase on bioconve- rsion of glycerol into 1,3-propandediol by klebsiella pneumoniae under micro-aerobic condition [ J ]. Bioprocess Biosyst Eng, 2009, 32(3) :313.
  • 3Feese MD, Faber HR, Bystron CE, et al. Glycerol kinase from Escherichia coli and an Ala65-Thr mutant:the crystal structures reveal conformational changes with implications for allosteric regu- lation[ J]. Strucrure, 1998,6 : 1407.
  • 4Durnin G, Clomburg J, Yeates Z, et al. Understanding and Har- nessing the Microaerobic Metabolism of Glycerol in Escherichia coil[ J ]. Biotechnol Bioeng , 2009 ,103 : 148.
  • 5Knop DR, Draths KM, Chandran SS, et al. Hydroaromatic equilib- rium during biosynthesis of shikimic acid [ J ]. J Am Chem Soc , 2001,123 : 10173.
  • 6Chandran SS, Yi J, Draths KM, et al. Phosphoenolpyruvate availa- bility and the biosynthesis of shikimic acid[ J]. Biotechnol Prog, 2003,19:808.
  • 7Gibson JM, Thomas PS, Thomas JD, et al. Benzene-free synthesis of phenol[J]. Angew Chem Int Ed , 2001, 40 :1999.
  • 8Escalante A, Calderon R, Valdvia A, et al. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phospho- transferase system [ J ]. Microb Cell Fact,2010,9:21.
  • 9Chen K,Dou J,Tang S,et al. Deletion of the aroK gene is essen- tial for high shikimic acid accumulation through the shikimate pathway in E. coli [ J]. Bioresour Technol , 2012 ,119:141.
  • 10Yazdani SS, Gonzalea R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry [ J ]. Curr Opin Biotechnol, 2007,18 ( 3 ) : 213.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部