期刊文献+

一类变系数抛物型方程的数值解法

Numerical solutions for a kind of variable coefficient parabolic differential equation
下载PDF
导出
摘要 讨论了带有初边值条件的抛物型方程。该问题需要求解u(x,t)和未知变系数a(t)>0。这是一个反问题。利用有限差分方法给出了该问题的三层线性化差分格式。收敛阶在L∞范数下为O(h2+τ2)。在pc机上利用Matlab软件编程,计算数值算例验证了理论收敛阶。 The parabolic differential equation with initial and boundary conditions is discussed which needs to solve the function u(x,t) and an unknown positive coefficient a(t).It is an inverse problem.The three-level linear difference format is presented with finite different method,and the convergence order in L∞ norm is O(h2+τ2).Numerical example in Matlab verify the theoretical result.
作者 李娟 王威
出处 《长春工业大学学报》 CAS 2011年第4期361-364,共4页 Journal of Changchun University of Technology
关键词 反问题 收敛阶 差分格式 inverse problem convergence difference format.
  • 相关文献

参考文献7

  • 1J R Cannon, D Zackman. Parameter determation in parabolic partial direrential equations from-over- specified boundary data[J]. Int. J. Engng. Sci., 1982,20:779-788.
  • 2B F Jones. Various methods for finding unknown coefficient in a parabolic differential equations [J]. Com-mun Puer Appl. Math. ,1963,16:33-44.
  • 3J A Maebain, J B Bendar. Existence and uniqueness properties {or one-dimensional magneto-telluric in- version problem[J]. J. Math. Phys. ,1986,27..645- 649.
  • 4J A Macbain. Inversion theory for a parameterized diffusion problem [J]. SIAM J. Appl. Math. , 1987,18: 1386-1391.
  • 5A I Prilepko, D G Orlovvskii. Determination of the evolution parameter of an equation and inverse prob- lem of mathematical physics [J]. J. Differential, 1985,21 (1) : 119-129.
  • 6H Azari, W Allegretto, Y Lin, et al. Numerical procedures for recovering a time dependent coeffi- cient in a parabolic differential equation[J]. Dynam Contin Discr Impuls Syst. Series B (Appl. Algo- rithms) ,2004,11 (1/2):181-199.
  • 7M Dehghan. Identification of a time dependent coef- ficient in a partial differential equation subject to an extra measurement[J]. Numer Methods Partial Dif- ferential, 2005,21 : 611-622.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部