期刊文献+

外斜儿童多焦视觉诱发电位特征性变化 被引量:1

Characteristic changes of multifocal visual evoked potential in exotropias
下载PDF
导出
摘要 目的研究外斜儿童多焦视觉诱发电位的特征性变化。方法采用德国Roland公司生产的RETIScan3.20多焦视觉电生理仪,对103例外斜患儿和30名正常对照组儿童进行多焦视觉诱发电位的检测,进行视网膜不同区域的比较。结果外斜组特征峰的振幅反应密度第1环为(710.31±13.54)nV·deg-2,低于正常对照组(835.29±11.02)nV·deg-2;外斜组特征峰隐含值第1环为(109.9±10.8)ms,长于正常对照组(103.8±11.1)ms,两者差异有统计学意义(P<0.05)。外斜组颞侧视网膜特征峰隐含值(106.9±3.1)ms,长于正常对照组(102.3±2.1)ms,两者差异有统计学意义(P<0.05);外斜组下半侧视网膜特征峰隐含值(108.6±3.4)ms,长于正常对照组(106.4±2.2)ms,两者差异有统计学意义(P<0.05)。结论外斜组的视觉传导通路的损害中心重于周边。外斜患者颞侧视网膜、下半视网膜视神经传导通路有损害。外斜的机能及形态学异常可能存在于从神经节细胞到视皮层的整个通路中,而不是单独某个层面受损。 Objective To study the characteristic changes of multifocal visual evoked potential(mVEP) in exotropic children.Methods The mVEP of both eyes of 103 exotropic children and 30 normal control children were recorded by Roland RETIScan 3.20 multiofcal electrophysiological system made by Germany Roland company,the changes in different retinal area were compared.Results The amplitude density in the first eccentricitie of the exotropia group was about(710.31±13.54)nV·deg-2,was lower than that of normal group(835.29±11.02)nV·deg-2;The implicit value in the first eccentricitie of the exotropia group was about(109.9±10.8)ms,was longer than that of the normal group(103.8±11.1) ms,there was statistical differences.The implicit value in the temporal retinal hemifield of exotropia group was about(106.9±3.1) ms,was longer than that of normal group(102.3±2.1) ms,there was statistical difference(P0.05).The implicit value in the lower retinal hemifield of exotropia group was about(108.6±3.4) ms,was longer than that of normal group(106.4±2.2) ms,there was statistical difference(P0.05).Conclusions In the exotropia group,the damage of visual conduction pathway in the central filed is more serious than that in the periphery filed.There are some damages in temporal and lower retinal field of visual conduction pathway in the exotropia group.In the exotropic eyes,the disfunction and morphology disorder may be existed though the full visual pathway from the ganglion cells to the visual cortex,but not a solo lamina.
出处 《眼科新进展》 CAS 北大核心 2011年第9期837-839,共3页 Recent Advances in Ophthalmology
基金 江西省教育厅普通科技计划项目资助(编号:GJJ10346)~~
关键词 多焦视觉诱发电位 外斜 振幅反应密度 multifocal visual evoked potential exotropia amplitude density
  • 相关文献

参考文献9

  • 1Zhao KX. An investigation of the multi-channel VEP topography by full field stimulation in functional amblyopia of children[J]. Zhong Hua Yanke Zazhi, 1990,25 (2) :58-72.
  • 2Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat' s striate cortex[ J]. J Phys,2009,587(12) :2721-2732.
  • 3Yin ZQ, Crewther SG, Wang C, Crewther DP. Pre- and post-criti- cal period induced reduction of Cat-301 immunoreactivity in the lateral geniculate nucleus and visual cortex of cats Y-blocked as adults or made strabismic as kittens [ J ]. Mol Vis, 2005,7 ( 12 ) : 858-866.
  • 4Dahlhaus M, Levelt CN. Structure and function relationships during ocular dominance plasticity in the visual cortex [ J ]. Nat Rev Neurosci ,2010 ,21 ( 3 ) :229-237.
  • 5Rauschecker JP. Mechansms of visual plasticity: Hebb synapses, NMDA receptors, and beyond [ J 1. Phys Rev, 1991,71 ( 2 ) : 587- 615.
  • 6Sengpiel F, Freeman TCB,Blakemore C. Interocular suppression in cat striate cortex is not orientation selective [ J ]. Neurore- port, 1995,6 ( 16 ) : 2235 -2239.
  • 7Mitchell DE, Kennie J, Schwarzkopf DS, Sengpiel F. Daily mixed visual experience that prevents amblyopia in cats does not al- ways allow the development of good binocular depth perception [J]. J Vis,2009,22( 1 ): 1-7.
  • 8Harrad R, Senpiel F, Blakemore C. Physiology of suppression in strabismic amblyopia [ J ]. Br J Ophthalmol, 1996,80 ( 4 ) : 373- 377.
  • 9封利霞,赵堪兴.斜视性弱视多焦VEP与多焦ERG的对比研究[J].中国实用眼科杂志,2005,23(2):150-154. 被引量:13

二级参考文献17

  • 1阴正勤 方谦逊 等.儿童弱视的图形视觉诱发电位分析[J].中华眼科杂志,1988,24(5):268-268.
  • 2Baker FH, Gfigg P, Von Noorden. Effects of visual deprivation and strabismus on the responses of neurons in the visual cortex o fthe monkey, including studies on the striate and prestriate cortex in th enormalanimal. Brain Research, 1974, 66:185-208.
  • 3Chino YM, Cheng H, Smith Ⅲ EL, et al. Early discordant binocular vision disrupts signal transfer in the lateral geniculate nucleus. Proc. Natl. Acad. Sci. USA, 1994, 91: 6938-6942.
  • 4Roelfsema PR, Konig P, Engel AK. Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci, 1994, 6:1645-1655.
  • 5Rauschecker JP. Mechanisms of visual plasticity: Hebb synapses,NMDA receptors, and beyond. Physiological Rev, 1996, 71:587-615.
  • 6Thomas J. Normal and amblyopie contrast sensitivity functions in central and peripheral retinae. Invest Ophthalmol Vis ,Sci, 1978,17:746-753.
  • 7Kirsehen DG, Flom MC. Visual acuity at different retinal loci of eccentrically fixating functional amblyopes. Am J Optom physiol Opt, 1978, 55:144-150.
  • 8Levi DM, Klein SA, Aitsebaomo AP. Detection and discrimination of the direction of motion in central and peripheral vision of normal and amblyopic observers. Vision Res, 1984, 24: 789-800.
  • 9Kubova Z, Kuba M, Juran J. Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses.Vision Res, 1996, 36 (1): 181-190.
  • 10Klistorner AI, Graham SL, Grigg JR. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci, 1998, 39:937-950.

共引文献12

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部