期刊文献+

一种新的地面目标多特征关联方法 被引量:3

A New Multi-feature Association Method on Ground Target
原文传递
导出
摘要 地面目标的强机动性和背景环境的复杂性,使得传统关联方法的目标分布类型和先验概率不易获得,且传统方法仅利用状态信息进行关联,导致目标关联正确率不高。针对这些问题,采用无需先验假设的灰色关联方法,在状态信息的基础上引入属性信息,共同作为灰色关联的多个特征指标,并利用最大离差法确定指标权重。仿真结果表明这里的算法有效地改善了关联正确率,增大关联区分度,满足实时性要求。 It is not easy to obtain distribution types and prior probability of ground targets because of strong mobility and complex background environment.The targets association accuracy is low only with state information by traditional method.Aiming at the above problems,the grey correlation method without any prior assumptions is adopted,and the state and attribute information is taken as the multi-feature indexes,and the maximum deviation method is employed to determine the index weights.The simulation results indicate that the algorithm described in this paper could effectively improve association accuracy,naise association distinction and meet the real-time requirement.
出处 《通信技术》 2011年第9期132-134,共3页 Communications Technology
关键词 地面目标 灰色关联法 多特征 最大离差法 ground target grey correlation multi-feature maximum deviation method
  • 相关文献

参考文献4

二级参考文献25

  • 1时永刚.Minkowski广义距离与多模态图像配准[J].北京理工大学学报,2005,25(10):913-918. 被引量:2
  • 2项勇,李海凌,卢永琴.设计方案优选中的离差最大化及熵值法[J].西华大学学报(自然科学版),2006,25(1):66-68. 被引量:6
  • 3孙晓东,焦玥,胡劲松.基于组合权重的灰色关联理想解法及其应用[J].工业工程与管理,2006,11(1):62-66. 被引量:53
  • 4陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 5Bass T.Intrusion Detection Systems and Multisensor Data Fusion[J].Communication of the ACM,2000,43(4):99-105.
  • 6Yang Taho,Chen Mu-Chen,Hung Chih-Ching.Multiple Attribute Decision-making Methods for the Dynamic Operator Allocation Problem[J].Mathematics and Computers in Simulation,2007,73(5):285-299.
  • 7Maskery M.Decentralized Algorithms for Netcentric Force Protection Against Antiship Missiles[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(4):1351-1372.
  • 8Coilins R T,Liu Y X,Leordeanu M.Online Selection of Discriminative Tracking Features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
  • 9Dorin Comaniciu,Visvanathan Ramesh,Peter Meer.Kernel-based Object Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(05):564-57.
  • 10Huang J.Image Indexing Using Color Correlograms[M].USA:IEEE,1998:156-163.

共引文献21

同被引文献31

  • 1赵联芳,傅大放,钱春香,黄太虎.道路水泥混凝土的环境影响评价[J].公路交通科技,2004,21(8):138-141. 被引量:11
  • 2王生昌,李百川.公路隧道汽车污染物基准排放量[J].长安大学学报(自然科学版),2005,25(1):77-81. 被引量:11
  • 3肖明珠,陈光(礻禹).基于可能性理论的测量数据处理[J].信息与电子工程,2006,4(2):98-102. 被引量:2
  • 4LOWE D.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal ofComputer Vision,2004,60(02):91-110.
  • 5CHEN A H,ZHU M,WANG Y H,et al.Mean Shift TrackingCombining SIFT[C]//IEEE.9th InternationalConference on ICSP.Germany:IEEE,2008:1532-1535.
  • 6RUF B,KOKIOPOULOU E,DETYNIECKI M.Mobile MuseumGuide based on Fast SIFT Recognition[C]//6thInternational Workshop on Adaptive MultimediaRetrieval.Berlin,Germany:Computer Science,2008:26–27.
  • 7BAY H,ESS A,TUYTELAARS T,et al.Speeded-Up RobustFeatures(SURF)[J].Computer Vision and ImageUnderstanding,2008,110(03):346-359.
  • 8RODRIGUEZ D,AOUF N.Robust Harris-SURF Features forRobotic Vision based Navigation[C]//IEEE.International IEEE Conference on IntelligentTransportation Systems.Madeira Island,Portugal:IEEE,2010:1160-1165.
  • 9FISCHLER M A,BOLLES R C.Random Sample Consensus:a Paradigm Model Fitting with Applications to ImageAnalysis and Automated Cartography[J].Communications of the Association of ComputingMachinery,1981,24(06):381–395.
  • 10ZHANG Z J,CAO C X,ZHANG R J,et al.Video CopyDetection based on Speeded Up Robust Features andLocality Sensitive Hashing[C]//IEEE.IEEEInternational Conference on Automation andLogistics.USA:IEEE,2010:13-18.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部