期刊文献+

具有异方差结构的一阶线性回归模型的DS最优设计(英文)

DS-optimal designs for first-degree regression models with heteroscedastic structures
下载PDF
导出
摘要 探讨具有异方差结构的一阶线性回归模型的DS最优设计问题,给出其异方差结构函数满足一定条件的固定系数一阶线性回归模型的DS最优设计的解析式,并证明随机系数一阶线性回归模型不存在任何DS最优设计. The paper investigates the DS-optimal designs for first-degree regression models with heteroscedastic structures.Sufficient conditions for the heteroscedastic structure are given to make sure that the equireplicated design is DS-optimal for the first-degree regression models with heteroscedastic errors.It is shown that there exists no DS-optimal design for first-degree random coefficient regression models.
作者 岳荣先 程靖
出处 《上海师范大学学报(自然科学版)》 2011年第2期111-116,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 supported by NSFC Grant(11071168) the Special Funds for Doctorial Authorities of Education Ministry(20103127110002) the Innovation Program of Shanghai Municipal Education Commission(11zz116) the Scientific Research Foundation of Chaohu College
关键词 DS最优准则 异方差误差 Loewner偏序 随机系数回归模型 DS-optimal criterion heteroscedastic error Loewner ordering random coefficient regression model
  • 相关文献

参考文献9

  • 1LISKI E P,LOUMA A,MANDAL N K,et al.Pitman nearness,distance criterion and optimal regression designs[J].Calcutta Statistical Association Bulletin,1998,48:179-194.
  • 2LISKI E P,LOUMA A,ZAIGRAEV A.Distance optimality design criterion in linear models[J].Metrika,1999,49:193-211.
  • 3LISKI E P,MANDAL N K,SHAH K R,et al.Topics in Optimal Designs[M].New York:Springer,2002.
  • 4LISKI E P,ZAIGRAEV A.A stochastic characterization of Loewner optimality design criterion in linear models[J].Metrika,2001,53:207-222.
  • 5MANDAL N K,SHAH K R,SINHA B K.Comparison of test vs control treatments using distance optimal criterion[J].Metrika,2000,52:147-162.
  • 6SHAH K R.On the optimality of some designs[J].Calcutta Statistical Association Bulletin,1970,20:1 -20.
  • 7SHAH K R,SINHA B K.Theory of optimal designs:Lecture Notes in Statistics 54[M].New York:Springer,1989.
  • 8SHAHARY R,BHANDARI S.DS-optimal designs in one-way ANOVA[C] //Indian Statistical Institute.Stat-Math Unit Tech Report.Calcutta,2001,3.
  • 9TONG Y L.The multivariate normal distribution[M].New York:Springer,1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部