期刊文献+

均值方差结构模型的渐近稳健推断(英文) 被引量:1

Robust Asymptotic Analysis for Mean and Covariance Structure Model
下载PDF
导出
摘要 均值方差模型广泛应用于行为、教育、医学、社会和心理学的研究.经典的极大似然估计对于异常点和分布扰动易受影响.本文基于目标函数最小化给出稳健估计,并基于稳健偏差提出模型拟合. Mean and covariance structure model is widely applied in behavioral,educational,medical,social and psychological research.The classic maximum likelihood estimate is vulnerable to outliers and distributional deviation.In this paper,robust estimate based onminimizing the objective function is proposed,and M-ratio test based on the robust deviance is suggested to assess the model fit.Empirical results are illustrated by a real example.
出处 《应用概率统计》 CSCD 北大核心 2011年第4期399-409,共11页 Chinese Journal of Applied Probability and Statistics
基金 supported by the National Natural Science Foundation of China (10671032) Nanjing Forestry University Foundation (163101004)
关键词 均值方差模型 拟合优度检验 稳健偏差 Mean and covariance structure model goodness-of-fit robust deviance.
  • 相关文献

参考文献20

  • 1Bollen, K.A., Structural Equations with Latent Variable, New York: Wiley, 1989.
  • 2Bentler, P.M. and Dudgeon, P., Covariance structure analysis: statistical practice, theory, and direc- tions, Annual Review of Psychology, 47(1996), 541-570.
  • 3Vonesh, E.F., Wang, H. and Majumdar, D., Generalized least squares, Taylor series linearization, and Fisher's scoring in multivariate nonlinear regression, Journal of the American Statistics Association, 96(2001), 282-291.
  • 4Browne, M.W, Asymptotically distribution-free methods for the analysis of covariance structures, British Journal of mathematical and statistical Psychology, 37(1984), 62- 83.
  • 5Huber, P.J.: Robust Statistics, New York: Wiley, 1981.
  • 6Maronna, R.A., Robust M-estimate of multivariate location and scatter, Annals of Statistics, 4(1976), 51-67.
  • 7Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A., Robust Statistics: The Approach Based on Influence Functions, New York: Wiley, 1986.
  • 8Lee, S.Y. and Xia, Y.M., Maximum likelihood methods in treating outliers.and symmetrically heavy-tailed distributions for nonlinear structural equation models with missing data, Psyehome- trika, 71(2006), 565-585.
  • 9Xia, Y.M., Song, X.Y. and Lee, S.Y., Robust model fitting for the nonlinear structural equa- tion model under normal theory, British Journal of Mathematical and Statistical Psychology, DOI: 10.1348/000711008X345966, 2008.
  • 10Muthen, B. and Kaplan, D., A comparison of some methodolodies for the factor analysis of non-normal Likert variables, British Journal of Mathematical and Statistical Psychology, 38(1992), 171-189.

同被引文献31

  • 1Bollen, K.A., Structural Equations with Latent Variables, New York: Wiley, 1989.
  • 2Lee, S.Y., Structural Equation Modeling: A Bayesian Approach, New York: Springer-Verlag, 2007.
  • 3Skrondal, A. and Rabe-Hesketh, S., Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models, Chapman and Hall/CRC, 2004.
  • 4Joreskog, K.G. and SSrbom, D., LISREL 8: Structural Equation Modeling with the SIMPLIS Com- mand Language, Scientific Software International: Hove and London, 1996.
  • 5Bentler, P.M., EQS 6 Structural Equations Program Manual, Encino, CA: Multivariate Software, Inc., 2004.
  • 6Muthen, B., LISCOMP: Analysis of Linear Structural Equations with a Comprehensive Measurement Model, Chicago: Scientific Software Inc., 1987.
  • 7Browne, M.W. and Shapiro, A., Robustness of normal theory methods in the analysis of linear latent variate models, British Journal of Mathematical and Statistical Psychology, 41(2)(1988), 193-208.
  • 8Yuan, K.H. and Bentler, P.M., Robust mean and covariance structure analysis, British Journal of Mathematical and Statistical Psychology, 51(1)(1998), 63 88.
  • 9Lee, S.Y., Poon, W.Y. and Bentler, P.M., A three-stage estimation procedure for structural equation models with polytomous variables, Psychometrika, 55(1)(1990), 45-51.
  • 10Lee, S.Y. and Xia, Y.M., A robust Bayesian approach for structural equation models with missing data, Psychometrika, 73(3)(2008), 343-364.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部