期刊文献+

基于第2代Curvelet的非监督式纹理缺陷分割 被引量:3

Unsupervised defects segmentation of texture based on second-generation curvelet
原文传递
导出
摘要 针对纹理缺陷分割问题,将曲波变换与均值漂移理论相结合,形成有效的纹理分割新方法。首先,通过曲波变换将图像分解到各通道,对各通道的图像进行非线性变换得到特征图像;然后,用均值漂移算法对各通道特征图像进行自适应聚类,找到各通道的奇异点;最后,对所有通道滤波后的图像进行重构,使缺陷凸显并通过阈值法二值化。该方法不需要学习样本,可以快速、精确地定位到多目标物边界,对旋转、亮度变化、噪声、弱边界具有很强的鲁棒性。通过MATLAB进行仿真实验,验证了该方法的有效性。 For the problem of texture defects segmentation, a new texture image segmentation approach based on the Mean Shift theory combined with the Curvelet transform is proposed. First, a Curvelet transform is used to decompose the image to each channel. Secondly, each channel's feature image derived from non-linear transformation is adaptively clustered to find the singular points using Mean Shift. Finally, the filtered images of all channels are reconstructed to make defects prominent, and the binary image is obtained by a threshold. In this paper, a learning sample is not needed and the multiobjects boundary is located fast and accurately. This method is robust against rotation, brightness changing, noise, and weak boundaries. The effectiveness of the method is verified by MATLAB simulation experiments.
作者 李健 牛振山
出处 《中国图象图形学报》 CSCD 北大核心 2011年第10期1812-1817,共6页 Journal of Image and Graphics
基金 温州市科技合作项目(H20090045) 陕西省教育厅专项科研计划项目(11JK1065)
关键词 纹理分割 曲波滤波 均值漂移 texture segmentation curvelet filtering mean shift
  • 相关文献

参考文献10

二级参考文献45

共引文献477

同被引文献33

  • 1叶聪颖,李翠华.基于HSI的视觉注意力模型及其在船只检测中的应用[J].厦门大学学报(自然科学版),2005,44(4):484-488. 被引量:24
  • 2Bastian Leibe A L,Schiele R Combined object catego-rization and segmentation with an implicit shape model[C]//Proceedings of European Conference ComputerVision* Prague,Czech Republic: Springer, 2004: 755-762.
  • 3Ning J,Zhang L,Zhang D, et al. Interactive imagesegmentation by maximal similarity based region mer-ging [J]. Pattern Recognition, 2010, 43 ( 2 ) : 445-456.
  • 4Ma Y,Zhang H. Contrast-based image attention a-nalysis by using fuzzy growing[C] //Proceedings of theEleventh ACM International Conference on Multimedi-a Berkeley, USA: ACM, 2003:374-381.
  • 5Achanta R,Estrada F,Wils P,et al. Salient regiondetection and segmentation[C]//International Confer-ence on Computer Vision Systems. Santorini Island,Greece : IEEE, 2008:66 - 75.
  • 6Goferman S,Zelnik-Mano L R, Tal A. Context -a-ware saliency detection [ C]//IEEE Conference onComputer Vision and Pattern Recognition. San Fran-cisco* USA:IEEE,2010:70-78.
  • 7Martin D,Fowlkes C,Tal D,et al. A database of hu-man segmented natural images and its application to e-valuating segmentation algorithms and measuring eco-logical statistics[C]//Proceeding of the IEEE Interna-tional Conference on Computer Vision* Kauai, HI,USA: IEEE, 2001: 416-425.
  • 8胡暾,赵佳佳,曹原,王芳林,杨杰.基于显著性及主成分分析的红外小目标检测[J].红外与毫米波学报,2010,29(4):303-306. 被引量:28
  • 9丁亮,张永平,张雪英.图像分割方法及性能评价综述[J].软件,2010,31(12):78-83. 被引量:32
  • 10张巧荣,景丽,肖会敏,刘海波.利用视觉显著性的图像分割方法[J].中国图象图形学报,2011,16(5):767-772. 被引量:29

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部