期刊文献+

3维模型局部高度研究 被引量:6

Three-dimensional model study on local height
原文传递
导出
摘要 提出一种新的3维模型的特征点检测算法。该算法可以作为其他许多3维模型处理技术的预处理操作(如模型简化、模型匹配、视点选择等)。与其他3维模型特征点检测算法相比,该算法具有两个特点:1)引入一种新的显著性度量方法——"局部高度",而不是传统的曲率。认为3维模型表面某点的视觉重要性(即显著性)是由它所在位置的凸起程度来刻画,而不是该点所在位置的弯曲程度所决定,因此,提出局部高度这种新的显著性度量方式。2)基于局部高度,引入Mean Shift算法这种非参数化的概率密度估计方法来对3维模型表面的局部高度分布进行聚类分析,然后计算出3维模型的特征点。实验结果表明,该算法能够很好地捕捉视觉上显著的3维模型特征点,且在不同分辨率下均有稳定的表现。 In this paper a new feature point detection method for 3 D meshes is proposed. This method serves as an important preprocessing step for a number of 3 D applications including mesh simplification, 3 D shape matching, and viewpoint selection. Compared with similar algorithms recently proposed, the proposed method has two advantages: 1 ) our feature point detection algorithm is based on our new perceptual saliency measure, using the local height, rather than being based on traditional curvature. We assume that the perceptual importance of a given point on a 3 D model can be described by the protrusiveness of that point, but not the bend degree. Therefore, we proposed the local height as a new measure for evaluating the perceptual importance of a point. 2) We use Mean Shift, a powerful nonparametric estimator of the density gradient, to analyze the distribution of local heights on a mesh, and to detect feature points on this mesh. Experimental results showed that our proposed method is able to capture perceptually salient feature points on a 3D method, and the algorithm is stable at different levels of details.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第10期1841-1849,共9页 Journal of Image and Graphics
基金 国家重点基础研究计划(973)项目(2010CB327903) 国家自然科学基金项目(60875011 60723003 60975043 61021062) 江苏省自然科学基金项目(BK2010054)
关键词 3维模型 特征点检测 局部高度 Mean SHIFT 3D model feature point detection local height Mean Shift
  • 相关文献

参考文献11

  • 1杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297-1310. 被引量:95
  • 2Lee C H, Varshney A, Jacobs D W. Mesh saliency [ J ]. ACM Transactions on Graphics (TOG)Proceedings of ACM Siggraph, 2005,24 (3) :659-666.
  • 3Liu Y S,Liu M,Kihara D,et al. [ C ]//Proceedings of the 2007 Physical Modeling. Washington: 277-282. Salient critical points for meshes ACM Symposium on Solid and University of Washington,2007 :.
  • 4Edelsbrunner H, Hater J, Zomorodian A. Hierarchical morse complexes for piecewisc linear 2-manifolds [ J ]. Discrete &Computational C, eometry,2003,30( 1 ) ,87-107.
  • 5Zou G, Hua J, Dong M, et al. Surface matching with salient keypoints in geodesic scale space [J].Computer Animation and Virtu al Worlds,2008,19(3-4) :399-410.
  • 6Lin J,Yang Y, Lu T, et al. Mesh segmenta tion by local depth [J].Proceedings of the 2010 Second International Conference on Computer Modeling and Simulation,2010,1 ( 1 ) :575-579.
  • 7Comaniciu D, Meer P. Mean shift analysis and applications [ J ]. Proceedings of the 7th IEEE International Conference on Computer Vision, 1999,2 (2) : 1197-1203.
  • 8Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis [J].Pattern Analysis and Machine Intelligence, 2002,24 ( 5 ) :603-619.
  • 9Li Z S,Li R F,Liu Y F,et al. A new improvement on mean-shift algorithm[J]. CISP'08 Proceedings of the 2008 Congress on Image and Signal Processing, 2008,1 ( 1 ) : 307-311.
  • 10Yamauchi H, Lee S, Ohtake Y L Y , et al. Feature sensitive mesh segmentation with mean shift [ C ]//Prococeedings of the 2005 International Conference on Shape Modeling and Applications. Washington : University of Washington, 2005 : 238- 245.

二级参考文献73

  • 1Elad M. , Tal A. , Ar S.. Content based retrieval of VRML objects - an iterative and interactive approach. In: Proceedings of Eurographics Workshop on Multimedia, Manchester, UK,2001, 97~108
  • 2Teh C. , Chin R. T.. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 496~513
  • 3Canterakis N.. Fast 3d zernike moments and invariants. Institute for Computer Science, University of Freiburg, Freiburg,Germany: Technical Report 5-97, 1997
  • 4Besl P.. Triangles as a primary representation. In: Proceedings of International NSF-ARPA Workshop on Object Representation in Computer Vision, New York, USA, 1994, 191~206
  • 5Suzuki M.. A web-based retrieval system for 3d polygonal models. In: Proceedings of Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, Canada,2001, 2271~2276
  • 6Gain J. , Scott J.. Fast polygon mesh querying by example.In: Proceedings of ACM SIGGRAPH, Technical Sketches,Los Angeles, USA, 1999, 241
  • 7Ibato M. , Otagiri T. , Ohbuchi R.. Shape-similarity search of three-dimensional models based on subjective measures. Information Processing Society of Japan, Japan: Technical Report 2002-CG-106, 2002
  • 8Vapnik V.. The Nature of Statistical Learning Theory. 2nd Edition. Berlin: Springer-Verlag, 1999
  • 9Pedro A. , Alberto D. , José M.. Spin images and neural networks for efficient content-based retrieval in 3d object databases. In: Proceedings of International Conference on Image and Video Retrieval, London, UK, 2002, 225~234
  • 10Elad M. , Tal A. , Ar S.. Directed search in a 3d objects database using SVM. HP Labs, Haifa, Israel: Technical Report HPL-2000-20R1, 2000

共引文献94

同被引文献76

  • 1艾强.基于不同插值方法的地下水等值线图绘制研究[J].地下水,2012,34(3):24-26. 被引量:6
  • 2王长海,黄维强,李辉,许国.岩滩水电站三维地质建模技术研究[J].水力发电,2010,36(12):11-14. 被引量:11
  • 3谭仁春,杜清运,杨品福,张珊珊.地形建模中不规则三角网构建的优化算法研究[J].武汉大学学报(信息科学版),2006,31(5):436-439. 被引量:17
  • 4潘志庚,孙树森,李黎.三维模型数字水印综述[J].计算机辅助设计与图形学学报,2006,18(8):1103-1110. 被引量:25
  • 5BLANZ V, TARR M J, BULTHOFF H H, et al. What object at- tributes determine canonical views? [ J]. Perception, 1999, 28 (5) : 579 - 599.
  • 6LEE C H, VARSHNEY A, JACOBS D W. Mesh saliency I J]. ACM Transactions on Graphics, 2005, 24(3): 659 -666.
  • 7SOKOLOV D, PLEMENONS D. Viewpoint quality and scene under- standing [ C]// Proceedings of the 6th International conference on Virtual Reality, Archaeulogy and Intelligent Cultural Heritage. Aire- la-Vile: Eurographics Association Press, 2005:67 - 73.
  • 8ZOU G, HUA J, DONG M, et al. Surface matching with salient keypoints in geodesic scale space [ J]. Computer Animation and Virtual Words, 2008, 19(3/4): 399-410.
  • 9DUTAGACI H, CHEUNG P C, GODIL A. A benchmark for best view selection of 3D objects [ C]/// 3DOR' 10: Proceedings of the ACM Workshop on 3D Object Retrieval. New York: ACM Press, 2010:45 - 50.
  • 10VAZQUEZ P P, FEIXAS M, SBERT M, et al. Viewpoint selection using viewpoint entropy [ C] // Proceedings of the 2001 Vision Mod- eling and Visualization Conference. Stuttgart: AKA Gmbh, 2001: 273 - 280.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部