期刊文献+

互信息启发的相似度组合图像检索算法 被引量:5

Combining similarity measures in content-based image retrieval guided by mutual information
原文传递
导出
摘要 图像的视觉特征与用户描述之间的差距一直是影响基于内容的图像检索准确度的最主要因素。对多种相似度进行组合来检索图像是近几年图像检索领域涌现出的一个研究热点,也是缩小这种差距的一种有效途径。如何选择更好的组合方法则是该领域很多研究者关注的核心问题。提出一种新的相似度组合算法。该算法基于互信息度量相对熵的原理,计算连续变量相似度与离散变量相似性之间的相关性,对多种相似度进行选择,以"和规则"组合相似度。在公用数据集上进行检索实验,该算法优于当前其他的"和规则"下的组合方法。 The lack of accordance between the information that one can extract from an image and the interpretability of the same image in a given situation is the most important factor that hampers the accuracy of content-based image retrieval (CBIR). Recently, the combination of several similarity measures draws much interest in the CBIR area, It can be shown that is effective in reducing this discordance. The core problem is:how to choose a better way to combine these similarities? In this paper, we propose a new combination algorithm. It combines similarity measures under the sum rule based on mutual information which estimates the correlation between the continuous random variable similarity measures and the discrete random variable similarity. The experimental results show that this algorithm achieves a high accuracy and efficiency in real-world image collections.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第10期1850-1857,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60873009)
关键词 基于内容的图像检索 相似度组合 互信息 和规则 content-based image retrieval similarity measures combination mutual information sum rule
  • 相关文献

参考文献15

  • 1Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences, and trends of the new age [ J ]. ACM Transactions on Computing Surveys, 2008, 40 (2) : 1-60.
  • 2Smeulders A W, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22 (12): 1349-1380.
  • 3苏中,张宏江,马少平.基于贝叶斯分类器的图像检索相关反馈算法[J].软件学报,2002,13(10):2001-2006. 被引量:21
  • 4Elena Renda M, Umberto Strccia. Web metasearch: rank vs. score based rank aggregation methods [ C ] //ACM Symposium on Applied Computing. Melbourne, Florida: ACM, 2003: 841-846.
  • 5Kittler J, Hatef M, Duin R P W, et al. On combining classifiers [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998, 20(3) : 226-239.
  • 6Arevalillo-Herrez M, Domingo J, Ferri F J. Combining similarity measures in content-based image retrieval [ J ]. Pattern Recognition Letters, 2008, 29( 16): 2174-2181.
  • 7Tortes R S, Falcao A X, Goncalves M A, et al. A genetic programming framework for content-based image retrieval [ J ]. Pattern Recognition, 2009, 42(2): 283-292.
  • 8Iqbal Q, Aggarwal J. Combining structure, color and texture for image retrieval: a performance evaluation [ C ] //Proceedings of 16th International Conference on Pattern Recognition (ICPR). Quebec City: IEEE ,2002:438-443.
  • 9David G Lowe. Distinctive image features from scale-invariance keypoints [ J ]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 10Mikolajezyk K,Schmid C. Scale & affine invariant interest point detectors[ J]. International Journal of Computer Vision, 2004, 60( 1 ) : 63-86.

二级参考文献9

  • 1Aalbersberg, I.J. Incremental relevance feedback. In: Belkin, N.J., ed. Pr oceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information retrieval. Copenhagen: ACM Press, 1992. 11~22.
  • 2Harman, D. Relevance feedback revisited. In: Belkin, N.J., ed. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Developme nt in Information Retrieval. Copenhagen: ACM Press, 1992. 1~10.
  • 3Cox, I.J., Minka, T.P., Papathomas, T.V., et al. The Bayesian image retrie val system, PicHunter: theory, implementation, and psychophysical experiments. I EEE Transactions on Image Processing, 2000,9(1):20~37.
  • 4Rui, Y., Huang, T.S. Relevance feedback: a power tool for interactive cont ent-based image retrieval. IEEE Circuits and Systems for Video Technology, 1999, 8(5):644~655.
  • 5Vasconcelos, N., Lippman, A. Learning from user feedback in image retrieva l systems. In: Proceedings of the NIPS'99. 1999. http://www.media.mit.edu/people /nuno/publications.html.
  • 6Su, Z., Zhang, H., Ma, S. Relevant feedback using a Bayesian classifier in content-based image retrieval. In: Yeung, M.M., et al, eds. Proceedings of the SPIE Storage and Retrieval for Media Databases, Vol 4315. San Jose: SPIE Press, 2001. 97~106.
  • 7Su, Z., Zhang, H., Ma, S. Using Bayesian classifier in relevant feedback o f image retrieval. In: Titsworth, M., ed. Proceedings of the 12th IEEE Internati onal Conference on Tools with Artificial Intelligence (IEEE ICTAI 2000). Vancouv er: IEEE CS Press, 2000. 258~261.
  • 8Rui, Y., Huang, T.S. A novel relevance feedback technique in image retriev al. In: Buford, J., ed. Proceedings of the 7th ACM International Conference (par t 2) on Multimedia (Part 2). New York, NY: ACM Press, 1999. 67~70.
  • 9Duda, R.O., Hart, P.E. Pattern Classification and Scene Analysis. New York : John Wiley & Sons, 1973.

共引文献20

同被引文献62

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部