期刊文献+

紧耦合多传感器混合跟踪算法 被引量:2

Tightly-coupled multi-sensor hybrid tracking algorithm
原文传递
导出
摘要 在增强现实应用中实现对运动目标的准确跟踪是一个具有挑战性的任务。基于混合跟踪通过对多传感器信息的融合通常比单一传感器跟踪算法更为优越的特性,提出了一种新的紧耦合混合跟踪算法实现视觉与惯性传感器信息的实时融合。该算法基于多频率的测量数据同步,通过强跟踪滤波器引入时变衰减因子自适应调整滤波预测误差协方差,实现对运动目标位置数据的准确估计。通过标示物被遮挡状态下的跟踪实验结果表明,该方法能有效改善基于扩展卡尔曼滤波器的混合跟踪算法对运动目标位置信息预测估计的准确性,提高跟踪快速移动目标的稳定性,适用于大范围移动条件下的增强现实系统。 Accurate tracking for augmented reality applications is a challenging task. Multi-sensor hybrid tracking generally provides more stable resalts than single visual tracking. A new tightly-coupled hybrid tracking approach combining visionbased systems with an inertial sensor is presented in this paper. Based on the multi-frequency sampling theory in the measurement data synchronization, a strong tracking filter is used to smooth sensor data and estimate the position and orientation. Through adding a time-varying fading factor to adaptively adjust the prediction error covariance of the filter, this method improves the performance of tracking for fast moving targets. Experimental results with occluded markers show that proposed approach can effectively improve the prediction accuracy of location information to target motion with the hybrid tracking algorithm based on the extended Kalman filter, improve the stability of fast moving target tracking. Our approach is suitable for a large range of mobile conditions.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第10期1951-1956,共6页 Journal of Image and Graphics
基金 中加政府间科技合作基金项目(2009AA01Z310) 国家高技术研究发展计划(863)项目(2009DFA12100) 中央高校基本科研业务费项目(ZYGX2009J075)
关键词 混合跟踪 多传感器 强跟踪滤波器 增强现实 hybrid tracking multi-sensor strong tracking filter augmented reality
  • 相关文献

参考文献8

  • 1Lobo J, Dias J. Relative pose calibration between visual and inertial sensors [ J ]. International Journal of Robotics Research, 2007, 26(6) : 561-575.
  • 2Bleser G, Stricker D. Advanced tracking through efficient image processing and visual-inertial sensor fusion [ C ]// Proceeding of IEEE International Conference on Virtual Reality 2008. Washington DC, USA : IEEE Computer Society, 2008 : 137-144.
  • 3Didier J Y, Ababsa F, Mallem M. Hybrid camera pose estimation combining square fiducials localization technique and orthogonal iteration algorithm [ J]. International Journal of Image and Graphics, 2008, 8 ( 1 ) : 169-188.
  • 4赵怀坤,林岳松,朱胜利.基于强跟踪滤波器的纯方位机动目标跟踪算法[J].系统仿真学报,2009,21(2):474-477. 被引量:4
  • 5段战胜,韩崇昭.一种强跟踪自适应状态估计器及其仿真研究[J].系统仿真学报,2004,16(5):1020-1023. 被引量:20
  • 6明德烈,柳健,田金文.非定标的虚实注册方法[J].红外与激光工程,2002,31(2):170-174. 被引量:4
  • 7You S, Neumann U, Azuma R. Hybrid inertial and vision tracking for augmented reality registration [ C ]// Proceedings of IEEE International Conference on Virtual Reality 1999. Washington DC, USA: IEEE Computer Society, 1999: 260-267.
  • 8Chen J, Pinz A. Structure and motion by fusion of inertial and vision-based tracking[ C ]//Proceedings of the 28th Workshop of the Austrian Association for Pattern Recognition. NSW, Austria: Australian Computer Society, 2004: 55-62.

二级参考文献27

  • 1段战胜,韩崇昭.一种强跟踪自适应状态估计器及其仿真研究[J].系统仿真学报,2004,16(5):1020-1023. 被引量:20
  • 2刘铭,周东华.残差归一化的强跟踪滤波器及其应用[J].中国电机工程学报,2005,25(2):71-75. 被引量:21
  • 3辛云宏,杨万海.基于伪线性卡尔曼滤波的多站IRST系统跟踪技术[J].红外与毫米波学报,2005,24(5):374-377. 被引量:15
  • 4蔡庆宇 薛毅 等.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997.4-7.
  • 5邓自立 郭一新.油田产油量、产水量动态预报[J].自动化学报,1983,9(2):121-126.
  • 6Aidala V J. Kalman filter behaviour in bearings only tracking applications [J]. IEEE Trans Aerosp Electron Syst. (S0018-9251), 1979, AES-15(1): 29-39.
  • 7T L Song, J Speyer. A stochastic analysis of a modified gain extended Kalman filter with applications to estimation with bearings only measurements [J]. IEEE Trans. on Automatic Control, (S0018-9286), 1985, AC-30(10): 940-949.
  • 8P Galkowski. M Islam. An alternative derivation of the modified gain function of Song and Speyer [J]. IEEE Trans. on Automatic Control, (S0018-9286), 1991,AC-36(11): 1322-1326.
  • 9S Koteswara Rao. Modified gain extended Kalman filter with application to bearings-only passive manoeuvering target tracking [J]. IEEE Proc.-Radar Sonar Navig (S 1751-8792), 2005, 152(4): 239-244.
  • 10Q Xia, M Rao, Y Ying, S X Shen. A new state estimation algorithmadaptive fading Kalman filter [C]// IEEE Proceedings of the 31th Conference on Decision and Control. Dec 1992. USA: IEEE, 1992: 1216-1221.

共引文献25

同被引文献31

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部