期刊文献+

决策树算法中过度拟合的研究与解决方案 被引量:1

Research and Resolve Over-fitting of Decision Tree Algorithm
下载PDF
导出
摘要 决策树算法广泛应用于模式识别和机器学习等领域,用来解决与分类相关的问题。决策树算法中的过度拟合会在很大程度上影响到最终的分类结果。针对过度拟合产生的原因,采用悲观错误剪枝方法,对学生成绩决策数据进行分析,得出影响学生成绩的重要因素。实验表明,该方法可以得到尽可能短的分类规则,有效地提高了决策树的性能。 Decision tree algorithms are widely used in the field of pattern recognition and machine learning,and used to solve problems related with the classification.The result of classification will be largely affected by over-fitting problem in the decision tree algorithm.According to the reasons of over-fitting,this paper analysis student achivement decision data by pessimistic error pruning method and get some important factors that affect students' performance.Experiments show that the method can get a classification rules as short as possible,effectively improve the performance of the decision tree.
作者 王琴竹
出处 《运城学院学报》 2011年第2期53-54,57,共3页 Journal of Yuncheng University
基金 山西省高校科技开发项目(20091151) 运城学院2009年度院级基础研究项目(JC-2009017)
关键词 决策树 过度拟合 剪枝 悲观错误剪枝法 Pruning Decision Tree Over-fitting Pessimistic Error Pruning
  • 相关文献

参考文献8

二级参考文献36

  • 1Blaz Zupan,Ivan Bratko. Post-pruning of Decision Trees
  • 2Breslow L A,Aha D W.Simplifying Decision Tree:A survey.http://www.aic.ntl.navy.mil/~ aha/, 2000
  • 3C S Wallace,J D Patrick. Coding decision trees[J].Machine Learning,1993; 11(1):7~22
  • 4E B Hunt,J Marin,P J Stone. Experiments in induction[M].New York:Wiley, 1966
  • 5Floriana Esposito, Donato Malerba, Giovanni Semeraro. A Comparative Analysis of Methods for Pruning Decision Trees[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997;19(5)
  • 6Floriana Esposito,Donato Malerba,Giovanni Semeraro. A further study of pruning methods in decision tree induction[J].Jn AI&Statistics,1995;(250) :211~218
  • 7I Kononenko,I Bratko,E Roskar. Experiments in automatic learning of medical diagnostic rules[R].Technical Report,Jozef Stefan Institute,Ljubljana, Yugoslavia, 1984
  • 8Isamu Shioya,Takao Miura. Knowledge Pruning in Decision Trees
  • 9Johannes Fürnkranz. Fossil:A Robust Relational Learner[C].In:Proceedings of the European Conference on Machine Learning, Catania,Italy, Springer-Verlag, 1994
  • 10Johannes Furnkranz. Efficient Pruning Methods for Relational Learning[D].Ph D thesis.Vienna University of Technology, 1994

共引文献107

同被引文献19

  • 1范洁,杨岳湘.决策树后剪枝算法的研究[J].湖南广播电视大学学报,2005(1):54-56. 被引量:9
  • 2谢益辉.基于R软件rpart包的分类与回归树应用[J].统计与信息论坛,2007,22(5):67-70. 被引量:37
  • 3陈磊.2011.中国18亿亩耕地红线遭严峻挑战.[EB/OL].[2012-6-10].http://house.ifeng.eom/news/detail.2011_02/25/48494260.shtml.
  • 4Boling AA, Tuong TP. 2008. The effect of toposequence posi- tion on soil properties, hydrology, and yield of rainfed low- land rice in Southeast Asia. Field Crops Research, 106:22 -33.
  • 5Breiman L, Friedman JH, Olshen R, et al. 1984. Classification and Regression Trees. Wadsworth New York: Chapman and Hall.
  • 6Clark LA, Pregibon D. 1992. Statistical Models in S. Monter- ey: Chapman and Hall/CRC.
  • 7De' ath G, Fabricius KE. 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81: 3178-3192.
  • 8Hseu ZY, Chen ZS. 2001. Quantifying soil hydromorphology of a rice-growing Ultisol toposequence in Taiwan. Soil Science Society of America Journal, 65 : 270-278.
  • 9Tsubo M, Basnayake J. 2006. Toposequential effects on water balance and productivity in rainfed lowland rice ecosystem in Southern Laos. Field Crops Research, 97: 209-220.
  • 10White AB, Kumar P, Tcheng D. 2005. A data mining approach for understanding topographic control on climate-Induced inter-annual vegetation variability over the United States. Remote Sensing of Environment, 98 : 1-20.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部