期刊文献+

互连网络的向量图模型 被引量:7

A Vector Graph Model for Interconnection Networks
下载PDF
导出
摘要 n-超立方体、环网、k元n超立方体、Star网络、煎饼(pancake)网络、冒泡排序(bubble sort)网络、对换树的Cayley图、De Brujin图、Kautz图、Consecutive-d有向图、循环图以及有向环图等已被广泛地应用做处理机或通信互连网络.这些网络的性能通常通过它们的度、直径、连通度、Hamiltonian性、容错度以及路由选择算法等来度量.首先提出了有向向量图和向量图的概念;其次,开发了有向向量图模型和向量图模型来更好地设计、分析、改良互连网络.进一步证明了上述各类著名互连网络都可表示为有向向量图模型或向量图模型.更重要的是该模型能够设计出新的互连网络-双星网络和三角形网络. n-cube, ring network, k-ary-n-cube, star network, pancake network, bub- ble sort network, Cayley graph of transposition tree, De Bruijn network, Kautz network, consecutive-d digraph, ILLIAC network, circulant digraph, circulant undirected graph, ring digraph,etc have been widely used as processor or communication networks. The performance of such networks is often measured through an analysis of their degree, diameter, connectivity, fault tolerance, routing algorithm, etc. In this paper, we proposed the concepts -- vector digraph and vector graph. Second, we developed vector digraph model and vector graph model for interconnection networks for designing, analyzing, and improving above networks. Furthermore, we show that the networks mentioned above can be concisely represented in the two models. More importantly, we show that the two models enabled us to design new networks -- double star network and triangle network based on vector graphs.
出处 《运筹学学报》 CSCD 2011年第3期115-123,共9页 Operations Research Transactions
基金 甘肃省自然科学基金(ZS991-A25-017-G)
关键词 互连网络 有向向量图 向量图 双星网络 三角形网络 interconnection network, vector digraph, vector graph, double star network, triangle network
  • 相关文献

参考文献11

  • 1Akers S B, Krishnamurthy B. A group-theoretic model for symmetric interconnection networks [J]. IEEE Transactions on Computers, 1989, 38(4): 555-565.
  • 2Barnes G H, Brown R M, Kato M, et al. The ILLIAC IV Computers IJ]. IEEE Transactions on Computers, 1968, 17:746-757.
  • 3Du D Z, Hwang F K. Generalized de Brujin digraphs [J]. Networks, 1988, 18(1): 27-38.
  • 4Du D Z, Hsu D F, Peck G W. Connectivity of consecutive-d digraph [J]. Discrete Applied Mathematics, 1992, 37/38:169-177.
  • 5Du D Z, Hsu D F, et al. Combinatorial Network Theory [M]. Kluwer Academic Publishers, 1996, 65-105.
  • 6Biggs N L. Algebraic Graph Theory [M]. Cambridge University Press, 1993.
  • 7Bondy J A, Murty U S R. Graph Theory With Application [M]. London and Basingstoke: MacMillan Press LTD, 1976.
  • 8Andre F, Verjus J P. Hypercubes and Distributed Computers [M]. Amsterdam, New York, Oxford: North-Halland, 1989.
  • 9Bettayeb S. On the k-ary hypercube [J]. Theoretical Computer Science, 1995, 140:333-339.
  • 10Preparata F P, Vuillemin J. The cube-connected cycles: A versatile network for parallel compu- tation [J]. Communication of the Association for Computing Machinery, 1981, 24(5): 300-309.

同被引文献53

  • 1刘红美.广义超立方体网络容错路由算法[J].武汉理工大学学报(交通科学与工程版),2006,30(4):682-685. 被引量:3
  • 2公维凤,刘红美,宦红伦,谢炜.广义超立方体网络中一类容错路由选择[J].数学的实践与认识,2006,36(9):244-249. 被引量:1
  • 3公维凤,王传会.广义超立方体网络的容错路由分析[J].山东轻工业学院学报(自然科学版),2006,20(4):34-38. 被引量:1
  • 4张禾瑞.近世代数基础[M].北京:高等教育出版社,1978.94-95.
  • 5Bondy J A, Marty U S R. Graph Theory[M]. London: Springer,2008.
  • 6Cayley A. The theory of graphs, graphical representation[J]. Mathematical Paper,Cambridge, 10(1895) :26-28.
  • 7Akers S B, krishnamurthy B. A group-theoretic model for symmetric interconnection networks[J]. IEEE Transactions on Computers, 1989,38(4): 555-565.
  • 8Lakshmivarahan S,Jwo J-S, Dhall S K. Symmetry in intercon- nection networks based on Caylay graphs of permutation groups.. A survey [J]. Parallel Computing, 1993,19 : 361-407.
  • 9Gauyacq G. On quasi-cayley graphs. Discrete Applied Mathematics, 1997(77): 43-58.
  • 10Shi Hai-zhong, Niu Pan-feng. Hamiltonian deconposition of some interconnection networks [A]//Proceed of 3th Aunnal International conference on Combinatorial Optimization and Applications. (Ding-zhu Du etc) [C]. Berlin: Springer, 2009,231-237.

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部