期刊文献+

融合Gabor特征二阶局部导数模式的人脸识别 被引量:7

Face Recognition Based on Fusion of Second-order Local Derivative Pattern in Gabor Characteristic
下载PDF
导出
摘要 二阶局部导数模式是一种基于一阶局部导数变化的方向性编码方式。相对于局部二值模式,二阶局部导数模式能够提取出图像的更多细节信息。本文提出了一种融合Gabor特征二阶局部导数模式的人脸识别方法。该方法首先利用Gabor滤波良好的空间位置与方向选择特性,采用四个频率六个方向的Gabor滤波器对图像进行滤波。其次,利用数据的类信息和邻接点信息,自适应地计算各频率和方向的权重,作为后续融合依据。然后,提取Gabor滤波图像四个方向的二阶局部导数特征,采用主成分分析方法对各方向的二阶导数特征进行降维。最后,在识别过程中,结合权重信息融合各方向和频率的识别概率得出最终识别结果。实验结果表明本文算法能够有效地提取图像细节信息,较其他方法如主成分分析方法,线性判别式方法,局部二值模式算法和融合灰度二阶局部导数模式算法具有更好的识别性能。 Second-order Local Derivative Pattern (LDP) is a general framework to encode directional pattern features based on local first-order derivative variations.Different from Local Binary Pattern (LBP),the second-order derivative pattern extracts local information by encoding various distinctive spatial relationships contained in a given local region and thus it can capture more detailed information than the first-order local pattern used in LBP.A new algorithm based on Fusion of Second-order Local Derivative Pattern in Gabor characteristic (FG2LDP) for face recognition is proposed.According to the good spatial position and orientation of Gabor filter,a Gabor filter with four frequencies and six orientations is firstly applied to filter face images.Secondly,the weight of each frequency and orientation is adaptively estimated for subsequent fusion.Thirdly,the second-order local derivative information of filtered images is extracted and low dimensional features in every direction are extracted by Principal Component Analysis (PCA).Finally,all the likelihoods in every frequency and orientation are fused together for the final recognition result.Experiments show that our method can effectively extract local features.It can consistently outperform other recognition methods based on PCA,Linear Discriminant Analysis (LDA),LBP and Fusion of Second-order Local Derivative Pattern (F2LDP) in gray images.
出处 《光电工程》 CAS CSCD 北大核心 2011年第10期103-109,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(60874002) 上海市优秀青年教师基金(slg09008) 上海理工大学光电学院教师创新基金(GDCX-T-101)
关键词 GABOR小波变换 二阶局部导数模式 局部二值模式 主成分分析 Gabor wavelet decomposition second-order local derivative pattern local binary pattern principal component analysis
  • 相关文献

参考文献15

  • 1Cevikalp Hakan, Neamtu Marian, Wikes Mitch, et al. Discriminative Common Vectors For Face Recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2005, 27(1): 4-13.
  • 2Zhao W, Chellappa R, Phillips P J, et al. Face Recognition: A Literature Survey [J]. ACM Comput. Surv(S0360-0300), 2003, 35(4): 399-459.
  • 3Turk M, Pentland A. Eigenfaces For Recognition [J]. Journal of Cognitive Neuroseienee(S0898-929X), 1991, 3(1): 71-86.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear [J]. IEEE Trans. PatternAnalysis(S0162-8828), 1997, 19: 711-720.
  • 5Barlett M S, Movellan J R, Sejnowski T J. Face Recognition By Independent Component Analysis [J]. IEEE Transactions on NeuralNetworks(S1045-9227), 2002, 13(6): 1450-1464.
  • 6HE Xiao-fei, YAN Shui-cheng, HU Yu-xiao, et al. Face Recognition Using Laplacian Faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2005, 27(3): 328-340.
  • 7Penev P S, Atick J J. Local Feature Analysis: A General Statistical Theory for Object Representation [J]. Network: Comput. Neural Syst(S0954-898X), 1996, 7(3): 477-500.
  • 8Wiskott L, Fellous J M, Kruger N, et al. Face Recognition by Elastic Bunch Graph Matching [J]. IEEE Trans. Pattern Analysis and Machine Intelligence(S0162-8828), 1997, 19(7): 775-779.
  • 9Ahonen T, Hadid A, Pietikainen M. Face Description with Local Binary Patterns: Application to Face Recognition [J]. IEEE Trans. Pattern Analysis and Machine Intelligence(S0162-8828), 2006, 28(12): 2037-2041.
  • 10ZHANG Bao-chang, GAO Yong-sheng, ZHAO San-qiang, et al. Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-order Local Pattern Descriptor [J]. IEEE Transaetions on Image Processing(S1057-7149), 2010, 19(2): 533-544.

二级参考文献10

  • 1肖冰,王映辉.人脸识别研究综述[J].计算机应用研究,2005,22(8):1-5. 被引量:53
  • 2Martinez A M,Benavente R.The AR Face Database[R].CVC Technical Report #24,Purdue University,1998.
  • 3Swets D L,Weng J.Using Discriminant Eigenfeatures for Image Retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828),1996,18(8):831-836.
  • 4CROUSE M,NOWAK R,BARANIUK R.Wavelet-based Statistical Signal Processing Using Hidden Markov models[J].IEEE Transactions on Signal Processing(S1053-587X),1998,46(4):886-902.
  • 5ZHANG Bao-chang,WANG Zong-li,ZHONG Bi-neng.Kernet Learning of Histogram of Load Gabor Phase Patterns for Face Recognition[J].EURASIP Journal on Advances in Signal Processing(S1687-6172),2008,2008:1-8.
  • 6Lyons M J,Budynek J,Plante A,et al.Classifying Facial Attributes Using a 2-D Gabor Wavelet Represetation and Discriminant Analysis[C] //Proceeding of the 4th IEEE International Conference on Automatic Faceand Gesture Recognition (AFGR'00),Grenoble,Fance,March 28-30,2000:202-207.
  • 7LIU C,Wechsler H.Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition[J].IEEE Transactions on Image Processing (S1057-7149),2002,11(4):467-476.
  • 8ZHANG Wen-chao,SHAN Shi-guang,GAO Wen,et al.Local Gabor Binary Pattern Histogram Sequence (LGBPHS):A Novel Non-statisticalmodel For Face Representation And Recognition[C] //Proceedings of the 10th IEEE International Conference on Computer Vision(ICCV'05),Beijing,China,October 17-20,2005,1:786-791.
  • 9Daugman J G.High Confidence Visual Recognition of Persons By a Test of Statistical Independence[J].IEEE Transactions on Pattern Analysis and Machine Intellgence(S0162-8828),1993,15(11):1148-1161.
  • 10Phillips P J,Moon H,Rizyi S A,et al.The FERET Evaluation Methodology for Face-recognition Algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),2000,22(10):1090-1104.

共引文献4

同被引文献83

  • 1赵明华,游志胜,赵永刚,吕学斌.基于NSA多尺度模型的人脸识别[J].激光技术,2006,30(1):107-109. 被引量:2
  • 2李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 3苑玮琦,于清澄.一种基于改进主成分分析的人脸识别方法[J].激光与红外,2007,37(5):478-480. 被引量:12
  • 4HOLUB A, MOREELS P, PERONA P. Unsupervised clustering for Google searches of celebrity images [C]//$th IEEE International Conference on Automatic Face & Gesture Recognition, Amsterdam, The Netherlands, September 17-19, 2008: 1-8.
  • 5CAO Zhi-min, YIN Qi, TANG Xiao-cu, et al. Face recognition with learning-based descriptor [C]//Proc oflEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, June 13-18, 2010: 2707-2714.
  • 6SERRANO A, de DIEGO I M, et al. Recent advances in face biometrics with Gabor wavelets: A review [J]. Pattern Recognition Letters (S0167-8655), 2010, 31(5): 372-381.
  • 7Nabatchian A, Raheem E A, Ahmadi M. Illumination invariant feature extraction and mutual-information-based local matching for recognition under illumination variation [J]. Pattern Reeognition(S0031-3203), 2011, 44(10/11): 2576-2587.
  • 8Ahonen T, Hadict A, Pietikainen M. Face recognition with local binary patterns [C]//The 8th European Conference on Computer Vision, Prague, Mayll-14, 2004, 3021: 469-481.
  • 9ZHAO Quan-you, PAN Bao-chang, PAN Jian-jia, et al. Facial expression recognition based on fusion of Gabor and LBP features [C]//ICWAPR. 6th International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, Aug30-31, 2008, 1: 362-367.
  • 10OJANSIVU V, HEIKKIL J. Blur insensitive texture classification using local phase quantization[C]//Proe of International Conference on Image and Signal Processing, Berlin: Springer-Verlag, 2008, 5099: 236-243.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部