期刊文献+

超空间中半群作用的弱混合性

The Weakly Mixing of Semigroup Action on Hyperspace
下载PDF
导出
摘要 研究超空间中半群作用的弱混合性.证明了:一个半群作用的动力系统(S,X)是弱混合当且仅当(,2X)是弱混合的;当且仅当对X的任意内部非空的闭子集K,存在序列{sn}S,使得在系统(,2X)中,limn→∞-sn(K)=X.其中(,2X)为由(S,X)诱导的超空间动力系统. This paper deals with the weak mixing of semigroup action on Hyperspace.We show that the followings are equivalent:(1)(S,X)is weakly mixing;(2)(,2X)is weakly mixing;(3)for every closed subset K of X with nonempty interior,there exists a sequence{sn}S,and in the system of(,2X),we have limn→∞n(K)=X.where(,2X)is a hyperspace dynamical system induced from(S,X).
出处 《怀化学院学报》 2011年第8期5-7,共3页 Journal of Huaihua University
基金 怀化学院科研项目(HHUY2010-02)
关键词 半群作用 弱混合性 超空间 semigroup action weakly mixing hyperspace
  • 相关文献

参考文献5

  • 1廖公夫,王立冬,张玉成.一类集值映射的传递性、混合性与混沌[J].中国科学(A辑),2005,35(10):1155-1161. 被引量:13
  • 2Dominik K, Piotr O. Topological entropy and chaos for maps induced on hyperspaces [ J ]. Chaos, Solitons and Fractals, 2007, 33: 76-86.
  • 3龙雄武,汪火云,陈宇光.半群作用的传递属性[J].广州大学学报(自然科学版),2011,10(2):11-14. 被引量:2
  • 4David B, Robert E, Mahesh N. The topological dynamics of semigroup actions [J]. Trans Amer Soc, 2000, 353:1279 - 1320.
  • 5Furstenberg H. Disjointness in ergodic theory, minimal sets and a problem in diophantine approximation [J]. Math Syst Theory, 1967, 1: 1-49.

二级参考文献25

  • 1熊金城.拓扑传递系统中的混沌[J].中国科学(A辑),2005,35(3):302-311. 被引量:29
  • 2熊金城,陈二才.强混合的保测变换引起的混沌[J].中国科学(A辑),1996,26(11):961-967. 被引量:9
  • 3YE Xiang-dong, HUANG Wen, SHAO Song. Topological dynamics[ M]. Beijing: Science Press, 2008.
  • 4ZHANG Jing-zhong, XIONG Jin-cheng. Iterated function and one -dimensional dynamical systems[M]. Chengdu: Sichuan Education Press,1992.
  • 5RUELLE D, TAKENS F. On the naturte of turbulence[J]. Comm Math Phys, 1971, 20: 167-192.
  • 6AKIN E. Recurrence in topological dynamics: Furstenberg families and Ellis Actions [ M ]. New York: Plenum Press, 1997.
  • 7DEVANEY R. An introduction to chaotic dynamical system[ M]. Red Wood City: Addison-Wesley, 1989.
  • 8AKIN E, AUSLANDER J, GLASNER E. The topological dynamics of Elliss Actions [ M 1. New York: Amer Math Soc, 2008.
  • 9KONTOROVICH E, MEGRELISHVILI M. A note on sensitivity of semigroup action[ Jl. Semigroup Forum, 2008, 76: 133-141.
  • 10DAVID B, ROBERT E, MAHESH N. The topological dynamics of semigroup actions [ J ]. Trans Amer Soc, 2000, 353: 1279-1320.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部