期刊文献+

基于CMDB的ITIL决策支持研究 被引量:3

Study for ITIL decision support based on CMDB
下载PDF
导出
摘要 基于CMDB数据库建立配置项关联关系有向图,在此基础之上在三个环节实现对ITIL提供决策支持:在事件管理环节基于数据挖掘分析事件关联度并找出问题,利用智能数据挖掘方法对事件构造分类模式,任一分类模式代表一类事件,也就是亟待解决的一个问题;在问题管理环节基于模糊有向图及智能算法进行故障诊断,用智能优化算法对所有可能的问题传播路径进行搜索,分析查找出问题背后隐藏的真实深层次根源;在变更管理环节建立评价变更影响度的指标体系,建立故障树并确定变更节点故障概率,使用定量及定性指标集成分析方法评估变更影响度,最后通过实例验证了方法有效性。 The relationship directed graph of configuration item based on configuration management database is constructed.Based on this,decision support for ITIL is realized in three segments.In incident management,data mining is adopted to analyze the incident relationship and to find problems.The intelli-gent data mining method is used to form classifying modes.Each mode represents a class of incidents,which is also a problem needs to be solved immediately.In problem management,fault diagnosis based on fuzzy directed graph and intelligent algorithm is used to find root causes of problem.The intelligent optimiz-ing algorithm is used to search every problem propagating paths.The architecture of indexes to evaluate change impact is constructed in change management.The fault tree is developed to determine the malfunc-tion probability of changing nodes.The integrated method dealing with qualitative and quantitative is de-vised to evaluate change impact.An example is used to verify the effectiveness of the method.
出处 《机械设计与制造》 北大核心 2011年第9期266-268,共3页 Machinery Design & Manufacture
基金 陕西省自然科学基金(2007E215) 陕西省教育厅基金资助(09JK562)
关键词 配置管理数据库 数据挖掘 智能优化 ITIL 决策支持 Configuration management database Data mining Intelligent optimizing Informa-tion technology infrastructure library Decision support
  • 相关文献

参考文献6

二级参考文献38

  • 1张小桃,倪维斗,李政,郑松.基于主元分析与现场数据的过热汽温动态建模研究[J].中国电机工程学报,2005,25(5):131-135. 被引量:34
  • 2张贝克,吴重光.一种基于SDG用于危险分析的新型定性仿真技术(英文)[J].系统仿真学报,2005,17(6):1339-1342. 被引量:7
  • 3曹文亮,王兵树,马良玉,张冀,高建强.基于改进SDG的电站热力系统故障诊断方法研究[J].中国电机工程学报,2005,25(23):124-128. 被引量:12
  • 4余燕芳,陆军.基于改进遗传算法的服务器端负载均衡算法[J].微电子学与计算机,2007,24(7):146-148. 被引量:6
  • 5Cai Y, Cercone N, Hart J. Attribute-oriented Induction in relational databases, Knowledge Discovery in Databases [M]. Cambridge, MA: MIT Press, 1991.
  • 6Han J, Fu Y. Attribute-oriented induction in data mining, advances in knowledge discovery and data mining [M]. Cambridge, MA : MIT Press, 1996.
  • 7Koonce D A, Tsai S C. Using data mining to find patterns in genetic algorithm sotutlons to a joh shop schedule [J]. Computers & Industrial. Engineering, 2000, 38(2): 361-374.
  • 8Chi Z, Nelson P C, Xiao W M, et al. An intelligent data mining system for drop test analysis of electronic products [J]. IEEE Transactions on Electronics Packaging Manufacturing, 2001,24(3 ) : 222-231.
  • 9Kusiak A. Feature transformation methods in data mining [J]. IEEE Transactions on Electronics Packaging Manufacturing, 2001, 24 (3): 214-221.
  • 10Baker J E. Adaptive selection methods for genetic algorithms [C] //Lawrence Erlbaum Associates. International conference on genetic algorithms and their applications. Pittsburgh, PA: 1985.

共引文献24

同被引文献23

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部