期刊文献+

优化PID与神经PID控制主动悬架的性能对比研究 被引量:8

Comparative study on performance of active suspensions based on optimized PID and neural PID control
下载PDF
导出
摘要 为主动悬架选择一种更可行的控制方法,对PID与神经PID控制主动悬架进行了优化后的性能对比研究。基于1/4车二自由度主动悬架模型,利用遗传算法以悬架二次型性能指标为目标函数,分别对PID控制主动悬架的增益系数与神经PID控制主动悬架的初始权值和学习效率进行了优化。优化结果显示:优化后的PID控制主动悬架的综合性能较神经PID控制主动悬架略优。出现上述结果的原因在于:当神经PID控制主动悬架的学习效率等于零时则退化成PID控制主动悬架,学习效率不等于零则导致神经PID控制主动悬架的实时PID权值偏离了最优的PID权值。此外凸块路面输入下的仿真也显示优化PID的鲁棒性也略优于优化神经PID。因此,选择算法较复杂的神经PID对主动悬架进行控制是没有必要的。 To choose a feasible control strategy for active suspension,the performance comparison between optimized PID and neural PID control for active suspension is presented.Based on a quarter-vehicle active suspension model,the quadratic performance index for active suspension shall be regarded as target function by applying genetic algorithm,and the gain coefficients of PID control and the initial weights and learning efficiency coefficients of neural PID shall be optimized respectively.The optimization result shows the comprehensive performance of optimized PID control active suspension is a little better than that of optimized neural PID control one.The reason lies in the following:the optimized neural PID control will degenerate into an optimized PID one when the efficiency coefficients of optimized neural PID control are set as zeros;when the learning efficiency coefficients are not equal to zeros,real-time PID weights of neural PID control will deviated from the optimized PID weights and lead to the above result.Simulation in bump road input demonstrates robustness of active suspension based on optimized PID is better than the one of active suspension based on optimized neural PID too.Therefore,it is not necessary for active suspension to choose more complex neural PID control.
出处 《机械设计与制造》 北大核心 2011年第10期96-98,共3页 Machinery Design & Manufacture
基金 国家自然科学基金资助项目(50805066) 江苏省自然科学基金资助项目(BK2008553)
关键词 车辆 主动悬架 PID 神经PID 优化 遗传算法 Vehicle Active suspension PID Neural PID Optimization GA
  • 相关文献

参考文献9

二级参考文献33

共引文献181

同被引文献59

  • 1柏建国,吕炳朝.多模态PID控制器[J].仪器仪表学报,1993,14(1):26-32. 被引量:23
  • 2曹晓莉.纯延迟系统仿人智能控制与最优PID控制对比仿真分析[J].重庆工商大学学报(自然科学版),2005,22(6):578-580. 被引量:2
  • 3刘云峰,缪栋.电液伺服系统的自适应模糊滑模控制研究[J].中国电机工程学报,2006,26(14):140-144. 被引量:41
  • 4刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2005.
  • 5Saavedra Flores E I, Friswell M I. Multi-scale finite element mod- el tbr a new material inspired by the mechanics and structure of wood cell-walls[ J]. Journaal of the Mechanics and Physics of Sol- ids,2012,60(7) : 1296-1309.
  • 6Chen Wenshuai, Yu Haipeng, Liu Yixing. Individualization of cellulose nanofibers from wood using higia-intensity uhrasonication combined with chemical pretreatments [ J ]. Carbohydrate Poly- mers,2011,83(4) :1804-1811.
  • 7Reitcrer A, Sinn G, Stanzl-Tschegg S E. Fracture characteristics of different wood species under mode I loading perpendicular to the grain[ J]. Materials Science and Engineering: A,2002,332 ( 1/ 2 ) :29-36.
  • 8Chert Wenshuai, Yu Haipeng, Liu Yixing. Preparation of millime- ter-long cellulose I nanofibers with diameters of 30- 80 nm from bamboo fibers [ j ]. Carohydrale Polymers, 201 I, 86 ( 2 ) : 453 - 461.
  • 9Guo Dezhi, Yang Chunmei, Ma Yan, et al. Based on fuzzy PID control' s research of concentration of sub-nanometer wood flour [J]. Applied Mechanics and Materials,2012,128/129:815-818.
  • 10高正中,张仁彦,隋涛,等.西门子S7-200CNPLC编程技术及工程应用[M].北京:电子工业出版社,2010:198-285.

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部