摘要
讨论具有可变营养消耗率和养分再生且周期输入的恒化器模型.利用脉冲微分方程的Floquet理论和小扰动定理找到了周期解的全局渐近稳定性,进而得到系统持续生存的充分条件.
The dynamic behaviors of a mathematical chemostat model with variable yield and nutrient recycling and periodically impulsive perturbation on substrate were considered.Using Floquet theory and small amplitude perturbation method,the condition in which the boundary periodic solution was globally asymptotically stable was established.Moreover,the permanence of the system was discussed in detail.
出处
《集美大学学报(自然科学版)》
CAS
2011年第5期384-388,共5页
Journal of Jimei University:Natural Science
基金
福建省自然科学基金资助项目(2008J0199)