期刊文献+

具有变消耗率和养分再生的脉冲恒化器模型

Complex Dynamics of a Chemostat with Variable Yield and Nutrient Recycling
下载PDF
导出
摘要 讨论具有可变营养消耗率和养分再生且周期输入的恒化器模型.利用脉冲微分方程的Floquet理论和小扰动定理找到了周期解的全局渐近稳定性,进而得到系统持续生存的充分条件. The dynamic behaviors of a mathematical chemostat model with variable yield and nutrient recycling and periodically impulsive perturbation on substrate were considered.Using Floquet theory and small amplitude perturbation method,the condition in which the boundary periodic solution was globally asymptotically stable was established.Moreover,the permanence of the system was discussed in detail.
作者 陈妍 张树文
机构地区 集美大学理学院
出处 《集美大学学报(自然科学版)》 CAS 2011年第5期384-388,共5页 Journal of Jimei University:Natural Science
基金 福建省自然科学基金资助项目(2008J0199)
关键词 恒化器系统 脉冲输入 持续生存 周期解 chemostat impulsive input permanence periodic solution
  • 相关文献

参考文献5

  • 1PILYUGIN S S, WALTMAN P. Multiple limit cycles in the chemostat with variable yield [ J ]. Math Biosci, 2003 (182) : 151-160.
  • 2ZHU L M, HUANG X C. Relative positions of limit cycles in the continuous culture vessel with varitable yield [ J]. Math Chem, 2005(38) : 119-128.
  • 3SUN S L, CHEN L S. Complex dynamics of a chemostat with variable yield and periodically impulisive perturbation on the substratc [ J ]. Journal of Mathematical Chemistry, 2008,43 (1) : 338-349.
  • 4SANLING Y, DONGMEI X, MAOAN H. Competition between plasmid-bearing and plasmid-free orgalllsms in a chemostat with nutrient recycling and an inhibitor [J]. Math Biosci, 2006(202) : 1-28.
  • 5BMNOV D D, SIMEONOV P S. Impulsive differential equations: periodic solutions and applications [ M ]. London: Longman, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部