期刊文献+

基于酪氨酸酶-氧化石墨烯的生物传感器的制备及应用 被引量:3

Fabrication of Biosensor Based on Tyrosinase-Graphene Oxide and Its Application
下载PDF
导出
摘要 研制了基于酪氨酸酶和氧化石墨烯修饰丝网印刷电极的生物传感器,并用于水中邻苯二酚的测定.1-芘丁酸琥珀酰亚胺酯分子通过非共价的π-π堆积作用吸附到氧化石墨烯上,酪氨酸酶与1-芘丁酸琥珀酰亚胺酯形成酰胺键,组装到氧化石墨烯上,制得纳米复合材料.该材料为酪氨酸酶的固定提供了有利的微环境,并且能很好地保持其生物活性.传感器对邻苯二酚响应灵敏、快速,达到稳态电流时间在9 s以内.实验结果表明,传感器的重现性、选择性和稳定性良好,检测线性范围为8.1×10-8 mol/L~2.2×10-5 mol/L,检出限为4.7×10-8 mol/L.所研制的传感器可应用在水中酚类化合物的现场快速检测之中. A disposable biosensor has been developed for the determination of catechol in water based on tyrosinase-graphene oxide modified screen printed electrode. Graphene oxide sheets (GS) were noncovalently-functionalized with 1- pyrenebutanoic acid and succinimidyl ester (PANHS). Subsequently, the tyrosinase could covalently bind with PANHS- functionalized GS by forming amide bond. The as-prepared biocompatible nanoeomposite could provide a biocompatible mieroenvironment to protect the activity of tyrosinase effectively. This disposable biosensor exhibited a fast amperometrie response ( less than 9 s) , and a high sensitivity for monitoring cateehol with good repeatability, selectivity and stability. The method showed good linearity in the range from 8. 1×10-8mol/L~2.2×10-5mol/L catechol with a detection limit of 4. 7 ×10-8mol/L. The results showed that the as-prepared disposable biosensor could be used in the rapid and in-situ monitoring of phenolic compounds in water samples.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期79-83,89,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 南京化工职业技术学院科研基金重点项目(NHKY-2010-05)
关键词 酪氨酸酶 氧化石墨烯 邻苯二酚 生物传感器 tyrosinase, graphene, catechol, biosensor
  • 相关文献

参考文献20

  • 1Jagetia G C, Menon K S L, Jain V. Genotoxic effect of hydroquinone on the cultured mouse spleenocytes [ J ]. Toxicol Lett, 2001, 121 ( 1 ) : 15-20.
  • 2Shan D, Zhu M, Han E, et al. Calcium carbonate nanoparticles: a host matrix for the construction of highly sensitive amperometric phenol biosensor[ J]. Biosensors and Bioelectronics, 2007, 23 (5) : 648-654.
  • 3Yavuz Y, Koparal A S. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide e- lectrode [ J ]. Journal of Hazardous Materials, 2006, 136 (2) : 296-302.
  • 4Ameer Q, Adeloju S B. Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film[J]. Sensors and Actuators B: Chemical, 2009, 140(1) : 5-11.
  • 5Liu Z, Liu Y, Yang H, et al. A Mediator-free tyrosinase biosensor based on ZnO Sol-Gel matrix[ J]. Electroanal, 2005, 17 (12) : 1 065-1 070.
  • 6Kampouris D K, Kadara R O, Jenkinson N, et al. Screen printed electrochemical platforms for pH sensing[ J]. Analytical Methods, 2009, 1 ( 1 ) : 25-28.
  • 7Arecchi A, Scampicchio M, Drusch S, et al. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds[ J]. Anal Chim Acta, 2010, 659(1/2) : 133-136.
  • 8Montereali M R, Seta L D, Vastarella W, et al. A disposable laccase-tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine [ J ]. Journal of Molecular Catalysis B: Enzymatic, 2010, 64 (3/4) : 189-194.
  • 9Tan Y, Guo X, Zhang J, et al. Amperometric catechol biosensor based on polyaniline-polyphenol oxidase [ J ]. Biosensors and Bioelectronics, 2010, 25(7) : 1 681-1 687.
  • 10Wang S, Tan Y, Zhao D, et al. Amperometric tyrosinase biosensor based on Fe3 04 nanoparticles-chitosan nanocomposite [ J]. Biosensors and Bioelectronics, 2008, 23 (12) : 1 781-1 787.

同被引文献90

  • 1邹鹏,石文荣,杨书华,黄德欢.石墨烯的化学气相沉积法制备及其表征[J].材料科学与工程学报,2014,32(2):264-267. 被引量:25
  • 2PEJCIC BOBBY, EADINGTON PETER, ROSS ANDREW.En- vironmental monitoring of hydrocarbons: A chemical sensor per- spective[J]. Environmental Science & Technology, 2007, 41 (18): 6333-6342.
  • 3YANG JINQUAN, WANG PENG, ZHANG XIAOJUN et al. Electrochemical sensor for rapid detection of triclosan using a muhiwall carbon nanotube film[J]. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9403-9407.
  • 4YANG SHUBIN, FENG XINLANG, WANG LONG et al. Graphene-basednanosheets with a sandwich structure[J]. Ange- wandte Chemic International Edition, 2010, 49(28): 4795 -4799.
  • 5GHOLIVAND MOHAMMADBagher, TORKASHVAND MARYAM, MALEKZADEH GHODRATOLLAH. Fabrication of an electro- chemical sensor based on computationally designed molecularly imprinted polymers for determination of cyanazine in food sam- ples{J]. Analytica Chimica Acta, 2012, 713(3): 36--44.
  • 6ZHAO YANFANG, WEI QIN, XU CAIXIA, et al. Label-free electrochemical for sensitive detection of kanamycin [J]. Sensors and Actuators B: Chemical, 2011, 155(2): 618-625.
  • 7LU CHUNHUA, YANG HUANGHAO, ZHU CHUNLING, et al. A grapheneplatformforsensingbiomolecules[J]. Angewandte Chemic International Edition, 2009, 121(26): 4879-4881.
  • 8TOPKAYA SEDA NUR, OZKAN-ARIKSOYSAL DILSAT, KOSOVA BUKET, et al. Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (GSTP1) hypermethylation in real samples[J]. Biosensors and Bioelectronies, 2012, 31(1): 516-522.
  • 9LI JUNHUA, KUANG DAI ZHI, FENG YONGLAN, et al. A graphene oxide-based electrochemical sensor for sensitive deter- mination of 4-nitrophenol[J]. Journal of Hazardous Materials, 2012, 201-202: 250-259.
  • 10GEIMA ANDRE, NOVOSELOV KONSTANTIN. The rise of graphene[J]. Nature Materials, 2007, 6, 183-191.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部