期刊文献+

基于阈上随机共振现象的弱信号检测 被引量:2

Weak Signal Detection Based on Suprathreshold Stochastic Resonance
下载PDF
导出
摘要 为了说明当信号幅值处于系统阈值上时,噪声依然对信号起到增强作用,研究了加和网络模型中的随机共振现象,并且将该模型作为线性检测器的预处理器以构成非线性检测器,来进行对弱信号的检测研究。在搭建的非线性检测器中采用奈曼皮尔逊准则对信号做出判决。仿真结果表明:在加和网络模型中观察到了阈上随机共振现象,且非线性检测器的检测性能明显优于线性检测器。这为强噪声环境中提高弱信号检测问题开辟了一条新思路。 In order to illustrate when the signal amplitude is higher than the system threshold,the noise also can play an enhance role for the signal.So this paper studies the stochastic resonance phenomenon in the parallel array mode,and introduces a nonlinear detector,which can detect the weak signal based on the parallel array model as a pre-processor of linear detector.The paper employs the Neyman-Pearson detection strategy to decision.The experiment simulations show that the suprathreshold stochastic resonance phenomenon exits in the parallel array mode and the performance of nonlinear detector is much better than the linear detector.This provides a new idea for enhancing the weak signal in strong noise environment.
出处 《微处理机》 2011年第4期25-27,30,共4页 Microprocessors
关键词 阈上随机共振 非高斯噪声 非线性检测器 Suprathreshold stochastic resonance(SSR) Non-Gaussian noise Nonlinear detector
  • 相关文献

参考文献7

  • 1R Benzi, G Parisi, A Stuem. Theory of stochastic reso-nance in climatic change [ J ]. SIAM Journal on applied mathematics, 1983,43 ( 3 ) :565 - 578.
  • 2D Rousseau, F Chapeau - Blondeau. Constructive role of noise in signal detection from parallel arrays of quantizers [ J]. Signal Processing ,2005,85 ( 3 ) :571 - 580.
  • 3S Kay. Can detectability be improved by adding noise [J]. IEEE Signal Process Letters,2000,7(1) :8 - 10.
  • 4N G Stocks. Suprathreshold stochastic resonance in multi- lever threshold systems [ J ]. Pysical Review Letters ,2000, 84( 11 ) :2310 -2313.
  • 5Collins J J, Chow C C, Imhoff T T. Aperiodic stochastic resinance in excitable systems [ J ]. Physical Review E, 1995,52(4) :3321 - 3324.
  • 6张雷,宋爱国.随机共振在信号处理中应用研究的回顾与展望[J].电子学报,2009,37(4):811-818. 被引量:18
  • 7Vijayendra M R, G V Anand. Performance analysis of a suprathreshold stochastic rensonance based nonlinear detector[ J ]. nonlinear statistical signal processing work- shop, IEEE ,2006 : 13 - 16.

二级参考文献40

  • 1R Benzi, et al. The mechanism of stochastic resonance [ J ]. Journal of Physics A: Mathematical General, 1981,14( 11 ) :453 - 457.
  • 2S Blanchard, D Rousseau,F Chapeau-Blondeau. Noise enhancement of signal transduction by parallel arrays of nonlinear neurons with threshold and saturation[J ]. Neurocomputing, 2007, 71(1 - 3) :333 - 341.
  • 3S Blanchard, D Rousseau, D Gindre, F Chapeau-Blondeau. Constructive action of the speckle noise in a coherent imaging system[ J]. Optics Letters,2007,32(14) : 1983 - 1985.
  • 4D Rousseau, G V Anand, F Chapeau-Blondeau. Noise-enhanced nonlinear detector to improve signal detection in non-Gaussian noise[ J]. Signal Processing, 2006,86(11) : 3456 - 3465.
  • 5F Duan, F Chapeau-Blondeau, D Abbott. Theory of array stochastic resonance in a parallel array of nonlinear dynamical elements[ J]. Physics Letters A, 2008,372(13) : 2159 - 2166.
  • 6F Chapeau-Blondeau,D Rousseau. Noise-aided SNR amplification by parallel arrays of sensors with saturation [ J ]. Physics Letters A,2006,351 (4 - 5) :231 - 237.
  • 7D Rousseau, F Chapeau-Blondeau. Constructive role of noise in signal detction from parallel arrays of quantizers [ J ]. Signal Processing,2005,85(3) :571 - 580.
  • 8S Blanchard, D Rousseau, D Gindre, F Chapeau-Blondeau. Benefits from a speckle noise family on a coherent imaging transmission[J].Optics Communications,2008,281(17) :4173 - 4179.
  • 9F Chapeau-Blondeau, D Rousseau. Enhancement by noise in parallel arrays of sensors with power-law characteristics[ J]. Physical Review E,2004,70(6) :060101.1 - 4.
  • 10B Xu,F Duan,F Chapeau-Blondeau. Comparison of aperiodic stochastic resonance in a bistable system realized by adding noise and by tuning system parameters[ J ]. Physical Review E,2004,69(6) :1 - 8.

共引文献17

同被引文献34

  • 1李鹏,陈刚,张葵.基于高阶累积量和匹配滤波的信号检测新方法[J].系统工程与电子技术,2006,28(1):31-33. 被引量:5
  • 2Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[ J]. Journal of Physics A:Mathematical and Gener- al, 1981,14( 11 ) :453-457.
  • 3Fauve S, Heslot F. Stochastic resonance in a bistable system [ J]. Phys Lett, t983,97A(1-2) :5-7.
  • 4Gammaitoni L, Hanggi P, Jung P. Stochastic resonance [ J ]. Rev Mod Phys, 1998,70( 1 ) :223-287.
  • 5Gingl Z, Kiss L B, Moss F. Non-dynamic stochastic resonance [ J ]. Eurnphysies Letters, 1995,29 : 191 - 196.
  • 6Mitaim S, Kosko B. Adaptive stochastic resonance [ J ]. Pro- ceeding of the IEEE, 1998,86 ( 11 ) :2152-2183.
  • 7Zozor S, Amblard P O. Stochastic resonance in discrete-time nonlinear AR(1 ) models[J]. IEEE Trans on Signal Process- ing, 1999,47( 1 ) : 108-122.
  • 8Collins J J, Chow C C, Imhoff T T. Aperiod stochastic reso- nance in excitable systems [ J ]. Phys Rev E, 1995,52 (4) : 3321-3324.
  • 9Collins J J,Chow C C, Imhoff T T. Stochastic resonance with- out tuning[J]. Nature,1995,376(20) :236-238.
  • 10Chapeau-Blondeau F, Godivier X. Theory of stochastic reso- nance in signal transmission by static nonlinear system [ J ]. Phys Rev E, 1997,55 ( 2 ) : 1478-1495.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部