摘要
Cells use various RNA (Ribonucleic Acid) regulatory mechanisms in order to temporally and coordinately influence the rate of protein synthesis. A deeper understanding of the dynamics of RNA regulation can ultimately bridge the gap between transcriptional control and protein expression. The nonlinear process of RNA-Protein Interaction (RIP), which can be viewed as the RNA analog of the better-known chromatin immunoprecipitation application (CHIP) plays a crucial role in post-transcriptional regulation of gene expression. While ChIP identifies DNA (Deoxyribonucleic Acid) targets of DNA-binding proteins in their cellular context, RIP can be used to identify specific RNA molecules associated with specific nuclear or cytoplasmic RNA-binding proteins. In this paper, a stochastic model in BioAmbients calculus for the protein synthesis and activation through RIP process is presemed.