期刊文献+

基于特征探测函数的图像去噪 被引量:3

Image Denoising Based on Feature Detection Function
下载PDF
导出
摘要 借助于图像信息结构张量的思想,构造出一个图像特征探测函数,然后在结合TV正则项的各向异性扩散可以保持边界的特点以及高阶PDE可以降低块状效应的的优势,提出了一个新的加权的图像去噪模型。利用数值模拟实验说明此模型的有效性。 Firstly, we construct an image feature detection function in term of the thought of image structure tensor. Secondly, combining the advantage of the TV regularization term' s anisotropic diffusion which can protect image edge well with the superiority of the high order PDE which can reduce stair case, we propose a new weighted image denoising model. Finally, we offer some experimental simula- tions and compare the results of our model with those of TV model. The results show that the restoration effect of our model is more effective than that of TV model.
出处 《重庆理工大学学报(自然科学)》 CAS 2011年第9期43-47,共5页 Journal of Chongqing University of Technology:Natural Science
基金 重庆市科委项目(CSTC 2010BB2310)
关键词 TV模型 高阶PDE 特征探测函数 图像去噪 TV model high order PDE feature detection function image denoising
  • 相关文献

参考文献10

  • 1Aubert G, Kornprobst P. Mathematical problems in image processing:Partial differential equations and the calculus of variations [M].[S. l. ]: Springer,2002.
  • 2Li F,Shen C,Fan J, et al. Image restoration combining a total variational filter and a fourth - order Filter [ J ]. Journal of visual communication and image representation. 2007,18:322 - 330.
  • 3Li F, Shen C, Shen Ch, et al. Variational denoising of partly-textured images [ J ]. J of vis corn image rep, 2009,20:293 - 300.
  • 4Greer J, Bertozzi A. Solutions of a class of fourth order non-linear equations for image processing [ J ]. Discret and continuous dynamical systems, 2004 ( 1/2 ) : 349 - 366.
  • 5Greer J, Bertozzi A. Traveling wave solutions of fourth order PDEs for image processing [ J]. SIAM J Math Anal,2004,36( 1 ) :38 -68.
  • 6Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [ J ]. IEEE Trans on Patt Anal Mach Intel, 1990,12 (7) :629 - 639.
  • 7Rousson M, Brox T, Deriche R. Active unsupervised texture segmentation on a diffusion based feature space [ C ]//in : Proceeding of the CVPR' 03. Madison : W1, 2003:699 - 704.
  • 8Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal Algorithms [ J]. Physical D, 1992, 60:259 - 268.
  • 9Strong D, Chan T. Edge-preserving and scale-dependent properties of total variation regulari-zation [ J ]. Inverse Problems ,2003,19 (6) : 165 - 187.
  • 10You Y,Kaveh M. Fourth-order partial differential equation for noise removal [ J ]. IEEE Trans. Image Process, 2000,9 (10) : 1723 - 1730.

同被引文献41

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2余昌盛,许力.基于弹簧质点模型的织物变形仿真技术[J].江南大学学报(自然科学版),2005,4(3):261-265. 被引量:5
  • 3冈萨雷斯等(RafaelC.Gonzalez,RichardE.Woods)著,阮秋琦阮宇智等译.数字图像处理[M].北京:电子工业出版社,2003.
  • 4G.Y. Chen, B. Kgl. Image de - noising with complex ridgelets[ J ]. Pattern Recognition , 2007, dO: 578- 555.
  • 5E. J. Candbs. Ridgelets: Theory and Applications [ D]. Ph. D. thesis. Technical Report. Department of Statistics, Stanford University, 1998.
  • 6E. J. Cands. Monoscale Ridgelets for the Representation of Images with Edges[R ]. Technical Report. Department of Statistics, Stanford University, 1999.
  • 7D. L. Donoho, I. M. Johnstone. Ideal spatial adaptation via wavelet shrink - age[ J ]. Biometrikz, 1994,81:425 - 455.
  • 8Zhang Xiao Ping, Desai M 5. Adaptive Denoising Based on SURE Risk [ J ]. IEEE Signal Processing Letters, 1998,5(10):265 - 267.
  • 9Chang S G, Yu B, vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Trans on Image Pro- cessin, 2000, 9(9) : 1532 - 1546.
  • 10Do M N, Vetterli M. Discrete ridgelet transforms for image representation[J]. IEEE Transactions on Image Processing, 2003, 12(1):16-28.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部